Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sputtering ion bombardment

Because the energy which is imparted to the target by ion bombardment is Anally transformed into thermal energy, the target plate is normally water-cooled in a sputtering apparatus. [Pg.19]

Sputtered Neutral Mass Spectrometry (SNMS) is the mass spectrometric analysis of sputtered atoms ejected from a solid surface by energetic ion bombardment. The sputtered atoms are ionized for mass spectrometric analysis by a mechanism separate from the sputtering atomization. As such, SNMS is complementary to Secondary Ion Mass Spectrometry (SIMS), which is the mass spectrometric analysis of sputtered ions, as distinct from sputtered atoms. The forte of SNMS analysis, compared to SIMS, is the accurate measurement of concentration depth profiles through chemically complex thin-film structures, including interfaces, with excellent depth resolution and to trace concentration levels. Genetically both SALI and GDMS are specific examples of SNMS. In this article we concentrate on post ionization only by electron impact. [Pg.43]

The atom flux sputtered from a solid surface under energetic ion bombardment provides a representative sampling of the solid. Sputtered neutral mass spectrometry has been developed as method to quantitatively measure the composition of this atom flux and thus the composition of the sputtered material. The measurement of ionized sputtered neutrals has been a significant improvement over the use of sputtered ions as a measure of flux composition (the process called SIMS), since sputtered ion yields are seriously affected by matrix composition. Neutral panicles are ionized by a separate process after sputter atomization, and SNMS quantitation is thus independent of the matrix. Also, since the sputtering and ionization processes are separate, an ionization process can be selected that provides relatively uniform yields for essentially all elements. [Pg.571]

Figura 1 Schematic of SNMS analysis. Neutral atoms and molecules sputtered from the sample surface by energetic ion bombardment are subsequently ionized for mass spectrometric analysis. Figura 1 Schematic of SNMS analysis. Neutral atoms and molecules sputtered from the sample surface by energetic ion bombardment are subsequently ionized for mass spectrometric analysis.
The essentials of SNMS are illustrated in Figure 1. The surface of the solid sample is sputtered by energetic ion bombardment. Generally, at eneigfes above a few hundred eV, several particles are ejected from the surface for each incident particle. A very small fraction of the particles are sputtered as ions, the so-called secondary ions... [Pg.572]

The sputtering process is frequendy used in both the processing (e.g., ion etching) and characterization of materials. Many materials develop nonuniformities, such as cones and ridges, under ion bombardment. Polycrystalline materials, in particular, have grains and grain boundaries that can sputter at different rates. Impurities can also influence the formation of surface topography. ... [Pg.704]

Corrective action for roughening induced by sputtering has taken several directions. The simultaneous use of two sputtering beams from different directions has been explored however, rotation of the sample during ion bombardment appears to be the most promising. Attention to the angle of incidence is also important... [Pg.707]

Crater Bottom Roughening. Depth resolution is also limited by roughening of the crater bottom under the action of ion bombardment. On polycrystalline samples this can be because of different sputter yields of different crystal orientations, because the sputter yields of single crystals can vary by a factor of two depending on their orientation. Because of this type of roughening, depth resolution deteriorates with increasing sputter depth. [Pg.107]

Local Thermodynamic Equilibrium (LTE). This LTE model is of historical importance only. The idea was that under ion bombardment a near-surface plasma is generated, in which the sputtered atoms are ionized [3.48]. The plasma should be under local equilibrium, so that the Saha-Eggert equation for determination of the ionization probability can be used. The important condition was the plasma temperature, and this could be determined from a knowledge of the concentration of one of the elements present. The theoretical background of the model is not applicable. The reason why it gives semi-quantitative results is that the exponential term of the Saha-Eggert equation also fits quantum-mechanical expressions. [Pg.108]

SIMS is inherently damaging to the sample since ion bombardment removes some material from the surface. However, other forms of damage may also occur. These include surface roughening, knock-on effects, preferential sputtering, decomposition, and implantation of source ions [49]. [Pg.296]

For the analysis of surfaces there are a group of ion bombardment techniques based on sputtering processes described in Ref 30 Since the spectra obtained consists mainly of adsorbed gases and radicals, these techniques are omitted from this discussion... [Pg.46]

Two basic versions of the process plasma-based ion plating and vacuum-based ion plating. The coating material is vaporized in a manner similar to evaporation. Typically, the plasma is obtained by biasing the substrate to a high negative potential (5 kV) at low pressure. The constant ion bombardment of the substrate sputters off some of the surface atoms which results in improved adhesion and reduced impurities. Surface coverage of discontinuities is also improved. [Pg.495]

Considerable effort has been expended on Ag atoms and small, silver clusters. Bates and Gruen (10) studied the spectra of sputtered silver atoms (a metal target was bombarded with a beam of 2-keV, argon ions produced with a sputter ion-gun) isolated in D, Ne, and N2. They found that an inverse relationship between Zett of the metal atom and the polarizability of rare-gas matrices (as determined from examination of... [Pg.92]

In all of the studies described above, the CuaSi samples were prepared by ion bombardment at 330 K followed by cooling of the surface to 180 K before adsorbing the methyl radicals and chlorine. AES studies as well as ion scattering results in the literature [7, 15] show that this procedure produces a surface that is enriched in silicon compared with the Cu3Si bulk stoicWometry. We have found that surfaces with less Si enrichment (possibly even copper enriched relative to the bulk stoichiometry) can be prepared by ion bombardment at temperatures below 300 K. Specifically, Cu(60 eV)/Si(92 eV) Auger peak ratios of 1.2 - 1.7 compared with a ratio of 0.5 at 400 K can be obteiined by sputtering at 180 K. [Pg.312]

Figure 5. Morphology and particle size distribution of an island silver thin film deposited on native oxide covered silicon (a) before ion bombardment and after (b) 0.5 keV Ar sputtering with 1.1 X 10, (c) 2.5 X 10, and (d) 3.9 x 10 ion/cm dose. Sputtering speed for silver was around 3-4ML/min. Total elapsed sputtering time is indicated on each size distribution graphs. (Reprinted from Ref [123], 2003, with permission from Springer.)... Figure 5. Morphology and particle size distribution of an island silver thin film deposited on native oxide covered silicon (a) before ion bombardment and after (b) 0.5 keV Ar sputtering with 1.1 X 10, (c) 2.5 X 10, and (d) 3.9 x 10 ion/cm dose. Sputtering speed for silver was around 3-4ML/min. Total elapsed sputtering time is indicated on each size distribution graphs. (Reprinted from Ref [123], 2003, with permission from Springer.)...
Figure 9 [171] shows the Au 4f emission of the nanoparticles at different steps of the sputtering. The as-cleaned spectrum (curve (a)) is equivalent to the published data of bulk gold. The Au/Si ratio was around 3.3, showing that the gold film was discontinuous. With further ion bombardment, the position of the 4f emission shifted to... [Pg.95]

The plasma potential is the maximum value with which ions can be accelerated from the edge of the sheath towards the substrate, located at the grounded electrode. This may cause ion bombardment, which may induce ion-surface interactions such as enhancement of adatom diffusion, displacement of surface atoms, trapping or sticking of incident ions, sputtering, and implantation see Section 1.6.2.1. [Pg.29]

Static SIMS is appropriate for obtaining information on the lateral distribution of surface chemical species. A broad, defocussed ion beam is often used in order to minimise surface damage. In dynamic SIMS sample erosion takes place quite rapidly, and depth profiles are obtained by monitoring peak intensities in the mass spectrum of sputtered ions as bombardment proceeds. [Pg.208]


See other pages where Sputtering ion bombardment is mentioned: [Pg.267]    [Pg.4594]    [Pg.257]    [Pg.2783]    [Pg.117]    [Pg.378]    [Pg.267]    [Pg.4594]    [Pg.257]    [Pg.2783]    [Pg.117]    [Pg.378]    [Pg.2931]    [Pg.2936]    [Pg.399]    [Pg.390]    [Pg.390]    [Pg.116]    [Pg.518]    [Pg.521]    [Pg.17]    [Pg.20]    [Pg.53]    [Pg.374]    [Pg.529]    [Pg.544]    [Pg.704]    [Pg.18]    [Pg.367]    [Pg.157]    [Pg.88]    [Pg.90]    [Pg.92]    [Pg.95]    [Pg.468]    [Pg.128]    [Pg.240]    [Pg.262]    [Pg.449]   
See also in sourсe #XX -- [ Pg.173 ]




SEARCH



Bombardment

Ion bombardement

Ion bombardment

Ion sputtering

Sputtered

Sputtered ions

Sputtering

© 2024 chempedia.info