Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Spiro oxides

A interesting and useful reaetion is the intramolecular polycyclization reaction of polyalkenes by tandem or domino insertions of alkenes to give polycyclic compounds[l 38]. In the tandem cyclization. an intermediate in many cases is a neopentylpalladium formed by the insertion of 1,1-disubstituted alkenes, which has no possibility of /3-elimination. The key step in the total synthesis of scopadulcic acid is the Pd-catalyzed construction of the tricyclic system 202 containing the bicyclo[3.2. Ijoctane substructure. The single tricyclic product 202 was obtained in 82% yield from 201 [20,164). The benzyl chloride 203 undergoes oxidative addition and alkene insertion. Formation of the spiro compound 204 by the intramolecular double insertion of alkenes is an exam-ple[165]. [Pg.158]

The reaction of arylnitrile oxides with 1,1-diphenylallenes gave a mixture of 4-methylene-2-isoxazolines (Scheme 106) with major attack at the C(2)—C(3) double bond (74JCS(P2)l30l, 76CSC67, 76CSC71, 72JCS(P2)1914) and not a mixture of the 4- and 5-methylene compounds. 1-Phenoxyallene and benzonitrile oxide produced a mixture of positional isomers and a spiro compound (Scheme 107) (79JOC2796). [Pg.91]

Benzonitrile oxide reacted with 3-phenyl-4-benzylideneisoxazolinone to produce two isomeric spiro compounds (Scheme 153) (72MI41609,72MI41608). The reaction of benzonitrile oxide with ketene produced a spiro derivative (67MI41600) with allenes, bis(spiroisoxazo-lines) along with monoaddition products were formed (Scheme 154) (79JOC2796, 70CR(C)-(271)1468). [Pg.108]

The most common method of epoxidation is the reaction of olefins with per-acids. For over twenty years, perbenzoic acid and monoperphthalic acid have been the most frequently used reagents. Recently, m-chloroperbenzoic acid has proved to be an equally efficient reagent which is commercially available (Aldrich Chemicals). The general electrophilic addition mechanism of the peracid-olefin reaction is currently believed to involve either an intra-molecularly bonded spiro species (1) or a 1,3-dipolar adduct of a carbonyl oxide, cf. (2). The electrophilic addition reaction is sensitive to steric effects. [Pg.2]

The mechanism for the conversion of the A -oxide (94) to the o-methylaminophenylquinoxaline (96) involves an initial protonation of the A -oxide function. This enhances the electrophilic reactivity of the a-carbon atom which then effects an intramolecular electrophilic substitution at an ortho position of the anilide ring to give the spiro-lactam (98). Hydrolytic ring cleavage of (98) gives the acid (99), which undergoes ready dehydration and decarboxylation to (96), the availability of the cyclic transition state facilitating these processes. ... [Pg.236]

Allenes 6 also react with peracids allene oxides 7 are formed, or even a spiro dioxide 8 can be obtained by reaction with a second equivalent of peracid ... [Pg.231]

Employing a C2 symmetry in the case of the thiirene 1-dioxide and remembering that the spiro-operator that mixes the fragment orbitals gives nonzero matrix elements only if these orbitals are symmetric to the C2 operation53, the net result is stabilizing. On the other hand, thiirene 1-oxide suffers a homoconjugative destabilization. [Pg.390]

The cycloaddition of alkynes and alkenes to nitrile oxides has been used in the synthesis of functionalised azepine systems <96JHC259>, <96T5739>. The concomitantly formed isoxazole (dihydroisoxazole) ring is cleaved by reduction in the usual way. Other routes to 1-benzazepines include intramolecular amidoalkylation <96SC2241> and intramolecular palladium-catalysed aryl amination and aryl amidation <96T7525>. Spiro-substituted 2-benzazepines have been prepared by phenolic oxidation (Scheme 5) <96JOC5857> and the same method has been applied to the synthesis of dibenzazepines <96CC1481>. [Pg.321]

Spiro compound (18), also containing two fIve-membered rings, can be made by oxidation of the acyloin (19) (Chapter T24). [Pg.405]

The third fact that seemed to argue in favor of the occurrence of radicals 10 was the observation that reactions of a-tocopherol under typical radical conditions, that is, at the presence of radical initiators in inert solvents or under irradiation, provided also large amounts of two-electron oxidation products such as o-QM 3 and its spiro dimerization product 9 (Fig. 6.8).16,25,26 This was taken as support of a disproportionation reaction involving a-tocopheroxyl radical 2 and its hypothetical tautomeric chromanol methide radical 10, affording one molecule of o-QM 3 (oxidation) and regenerating one molecule of 1 (reduction). The term disproportionation was used here to describe a one-electron redox process with concomitant transfer of a proton, that is, basically a H-atom transfer from hypothetical 10 to radical 2. [Pg.169]

FIGURE 6.8 Hypothetical disproportionation of two a-tocopherol-derived radicals 2 and 10 in the absence of other coreactants to account for the formation of typical two-electron oxidation products (o-QM 3, a-tocopherol spiro dimer 9). [Pg.170]

The first indication27 3 that a verification of its occurrence might be indeed possible was provided with the observation that oxidation of a-tocopherol by excess Ag20 at —78 °C caused immediate formation of the spiro dimer via the o-QM 3 within less than... [Pg.178]

FIGURE 6.17 Oxidation of a-tocopherol (1) conventionally leads to its spiro dimer (9) via ortho-quinone methide 3 (path A). The zwitterionic o-QM precursor 3a is stabilized by NMMO in complex 17, which upon rapid heating produces small amounts of new dioxocine dimer 18 (path B). Acid treatment of 18 causes quantitative conversion into spiro dimer 9, via o-QM 3 (path C). [Pg.180]

The oxidation of a-tocopherol (1) to dimers29,50 and trimers15,51 has been reported already in the early days of vitamin E chemistry, including standard procedures for near-quantitative preparation of these compounds. The formation generally proceeds via orf/zo-quinone methide 3 as the key intermediate. The dimerization of 3 into spiro dimer 9 is one of the most frequently occurring reactions in tocopherol chemistry, being almost ubiquitous as side reaction as soon as the o-QM 3 occurs as reaction intermediate. Early accounts proposed numerous incorrect structures,52 which found entry into review articles and thus survived in the literature until today.22 Also several different proposals as to the formation mechanisms of these compounds existed. Only recently, a consistent model of their formation pathways and interconversions as well as a complete NMR assignment of the different diastereomers was achieved.28... [Pg.187]

Formation of the ethano-dimer of a-tocopherol (12) by reduction of spiro dimer (9) proceeds readily almost independently of the reductant used. This reduction step can also be performed by tocopheroxyl radicals as occurring upon treatment of tocopherol with high concentrations of radical initiators (see Fig. 6.10). The ready reduction can be explained by the energy gain upon rearomatization of the cyclohexadienone system. Since the reverse process, oxidation from 12 to 9 by various oxidants, proceeds also quantitatively, spiro dimer 9 and ethano-dimer 12 can be regarded as a reversible redox system (Fig. 6.22). [Pg.187]

The methano-dimer of a-tocopherol (28)50 was formed by the reaction of o-QM 3 as an alkylating agent toward excess y-tocopherol. It is also the reduction product of the furano-spiro dimer 29, which by analogy to spiro dimer 9 occurred as two interconvertible diastereomers,28 see Fig. 6.23. However, the interconversion rate was found to be slower than in the case of spiro dimer 9. While the reduction of furano-spiro dimer 29 to methano-dimer 28 proceeded largely quantitatively and independently of the reductant, the products of the reverse reaction, oxidation of 28 to 29, depended on oxidant and reaction conditions, so that those two compounds do not constitute a reversible redox pair in contrast to 9 and 12. [Pg.187]

FIGURE 6.23 Methano-dimer of a-tocopherol (28) formation and redox reactions, including oxidation to the two fluxationally interconvertible diastereomers of furano-spiro dimer 29. [Pg.188]

Treatment of methano-dimer 28 with elemental bromine revealed a remarkable reactivity at low temperatures it proceeded quantitatively to the furano-spiro dimer 29, by analogy with the ethano-dimer 12 giving spiro dimer 9 upon oxidation. With increasing temperatures, the reaction mechanism changed, however, now affording a mixture of 5-bromo-y-tocopherol (30) and spiro dimer 9 (Fig. 6.24). Thus, the methano-dimer 28 fragmented into an a-tocopherol part, in the form of o-QM 3 that dimerized into 9, and a /-tocopherol part, which was present as the 5-bromo derivative 30 after the reaction. Thus, the overall reaction can be regarded as oxidative dealkylation. [Pg.189]

A particularly interesting case was the oxidative spiro dimerization of a,CO-bis (tocopheryl)alkanes (36), which basically present two a-tocopherol units linked at C-5a by an alkyl bridge.59 The reaction of other a,0)-bis(hydroxyphenyl)-alkanes, such as 37—40, proceeded similarly (Fig. 6.30). [Pg.193]


See other pages where Spiro oxides is mentioned: [Pg.238]    [Pg.108]    [Pg.237]    [Pg.152]    [Pg.350]    [Pg.452]    [Pg.490]    [Pg.459]    [Pg.91]    [Pg.1052]    [Pg.164]    [Pg.193]    [Pg.165]    [Pg.165]    [Pg.168]    [Pg.28]    [Pg.55]    [Pg.289]    [Pg.8]    [Pg.459]    [Pg.214]    [Pg.227]    [Pg.116]    [Pg.28]    [Pg.179]    [Pg.179]    [Pg.190]    [Pg.190]    [Pg.192]    [Pg.193]   


SEARCH



© 2024 chempedia.info