Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Spin hybridization

OPEN-SHELL LEWIS STRUCTURES AND SPIN HYBRIDS... [Pg.82]

Open-Shell Lewis Structures and Spin Hybrids 83... [Pg.83]

Given the two spin-Lewis structures in (4.46), one can envision the composite spin hybrid as having average bond order of two, correctly indicative of bond... [Pg.84]

NBO delocalizations (e.g., of o —> rtoo type cf. Chapter 5) that significantly affect ozone structure and reactivity. Further aspects of the interplay between spin hybridization (involving Lewis-type NBOs) and resonance hybridization (involving non-Lewis NBOs) will be discussed in Chapter 5. [Pg.86]

A wide variety of measurements can now be made on single molecules, including electrical (e.g. scanning tunnelling microscopy), magnetic (e.g. spin resonance), force (e.g. atomic force microscopy), optical (e.g. near-field and far-field fluorescence microscopies) and hybrid teclmiques. This contribution addresses only Arose teclmiques tliat are at least partially optical. Single-particle electrical and force measurements are discussed in tire sections on scanning probe microscopies (B1.19) and surface forces apparatus (B1.20). [Pg.2483]

MMVB is a hybrid force field, which uses MM to treat the unreactive molecular framework, combined with a valence bond (VB) approach to treat the reactive part. The MM part uses the MM2 force field [58], which is well adapted for organic molecules. The VB part uses a parametrized Heisenberg spin Hamiltonian, which can be illustrated by considering a two orbital, two electron description of a sigma bond described by the VB determinants... [Pg.301]

This is an example of a Mobius reaction system—a node along the reaction coordinate is introduced by the placement of a phase inverting orbital. As in the H - - H2 system, a single spin-pair exchange takes place. Thus, the reaction is phase preserving. Mobius reaction systems are quite common when p orbitals (or hybrid orbitals containing p orbitals) participate in the reaction, as further discussed in Section ni.B.2. [Pg.346]

As proven in Chapter 13.Ill, this two-configuration description of Be s electronic structure is equivalent to a description is which two electrons reside in the Is orbital (with opposite, a and (3 spins) while the other pair reside in 2s-2p hybrid orbitals (more correctly, polarized orbitals) in a manner that instantaneously correlates their motions ... [Pg.234]

Both HF and DFT calculations can be performed. Supported DFT functionals include LDA, gradient-corrected, and hybrid functionals. Spin-restricted, unrestricted, and restricted open-shell calculations can be performed. The basis functions used by Crystal are Bloch functions formed from GTO atomic basis functions. Both all-electron and core potential basis sets can be used. [Pg.334]

In most metals the electron behaves as a particle having approximately the same mass as the electron in free space. In the Group IV semiconductors, dris is usually not the case, and the effective mass of electrons can be substantially different from that of the electron in free space. The electronic sUmcture of Si and Ge utilizes hybrid orbitals for all of the valence elecU ons and all electron spins are paired within this structure. Electrons may be drermally separated from the elecU on population in dris bond structure, which is given the name the valence band, and become conduction elecU ons, creating at dre same time... [Pg.154]

The vinyl H2C=CH radical can be produced by cleavage of a C-H bond in ethene, and has been studied in the gas phase. The unpaired electron clearly occupies a carbon sp hybrid orbital, to lapse into the language of descriptive organic chemistry, but there are regions of space where the, 6-spin electrons have... [Pg.309]

Divalent carbon species called carbenes are capable of fleeting existence. For example, methylene, CH2, is the simplest carbene. The two unshared electrons in methylene can be either spin-paired in a single orbital or unpaired in different orbitals. Predict the type of hybridization you expect carbon to adopt in singlet (spin-paired) methylene and triplet (spin-unpaired) methylene. Draw a picture of each, and identify the valence orbitals on carbon. [Pg.33]

In Section 13.2, we introduce the materials used in OLEDs. The most obvious classification of the organic materials used in OLEDs is small molecule versus polymer. This distinction relates more to the processing methods used than to the basic principles of operation of the final device. Small molecule materials are typically coated by thermal evaporation in vacuum, whereas polymers are usually spin-coated from solution. Vacuum evaporation lends itself to easy coaling of successive layers. With solution processing, one must consider the compatibility of each layer with the solvents used for coating subsequent layers. Increasingly, multilayered polymer devices arc being described in the literature and, naturally, hybrid devices with layers of both polymer and small molecule have been made. [Pg.219]

Radicals with very polar substituents e.g. trifluoromethyl radical 2), and radicals that arc part of strained ring systems (e.g. cydopropyl radical 3) arc ct-radicals. They have a pyramidal structure and are depicted with the free spin resident in an spJ hybrid orbital. nr-Radicals with appropriate substitution are potentially chiral, however, barriers to inversion are typically low with respect to the activation energy for reaction. [Pg.12]

Radicals with adjacent Jt-bonds [e.g. allyl radicals (7), cyclohexadienyl radicals (8), acyl radicals (9) and cyanoalkyl radicals (10)] have a delocalized structure. They may be depicted as a hybrid of several resonance forms. In a chemical reaction they may, in principle, react through any of the sites on which the spin can be located. The preferred site of reaction is dictated by spin density, steric, polar and perhaps other factors. Maximum orbital overlap requires that the atoms contained in the delocalized system are coplanar. [Pg.13]

Radical additions are typically highly exothermic and activation energies are small for carbon30-31 and oxygen centered32,33 radicals of the types most often encountered in radical polymerization, Thus, according to the Hammond postulate, these reactions are expected to have early reactant-like transition states in which there is little localization of the free spin on C(J. However, for steric factors to be important at all, there must be significant bond deformation and movement towards. sp hybridization at Cn. [Pg.20]

C atom has one unpaired electron in each of its four sp hybrid orbitals and can therefore form four cr-bonds that point toward the corners of a regular tetrahedron. The C—C bond is formed by spin-pairing of the electrons in one sp hybrid orbital of each C atom. We label this bond hybrid orbital composed of 2s- and 2/t-orbitals on a carbon atom, and the parentheses show which orbitals on each atom overlap (Fig. 3.15). Each C—H bond is formed by spin-pairing of an electron in one of the remaining sp hybrid orbitals with an electron in a 1 s-orbital of an H atom (denoted His). These bonds are denoted cr(C2s/ Hls). [Pg.233]


See other pages where Spin hybridization is mentioned: [Pg.540]    [Pg.206]    [Pg.23]    [Pg.390]    [Pg.210]    [Pg.84]    [Pg.85]    [Pg.85]    [Pg.540]    [Pg.206]    [Pg.23]    [Pg.390]    [Pg.210]    [Pg.84]    [Pg.85]    [Pg.85]    [Pg.146]    [Pg.151]    [Pg.329]    [Pg.213]    [Pg.6]    [Pg.19]    [Pg.103]    [Pg.172]    [Pg.198]    [Pg.199]    [Pg.60]    [Pg.183]    [Pg.696]    [Pg.13]    [Pg.236]    [Pg.4]    [Pg.381]    [Pg.391]    [Pg.759]    [Pg.760]    [Pg.246]   
See also in sourсe #XX -- [ Pg.63 ]




SEARCH



Local spin-density approximations hybrid exchange functionals

Open-shell Lewis structures and spin hybrids

Spin hybrid

Spin hybrid

© 2024 chempedia.info