Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Spin correlation with

In some cases radical cations may undergo cycloadditions with an acceptor derived intermediate without prior proton transfer. This is observed especially for radical cations without sufficiently acidic protons, although it is not limited to such species. For example, the photoreaction of chloranil with 3,3-dimethylindene results in two types of cycloadducts [141]. In the early stages of the reaction a primary adduct is identified, in which the carbonyl oxygen is connected to the p-position of the indene (type B) in the later stages this adduct is consumed and replaced by an adduct of type A, in which the carbonyl oxygen is connected to the a-position. CIDNP effects observed during the photoreaction indicate that the type B adduct is formed from free indene radical cations, which have lost their spin correlation with the semiquinone anions. [Pg.159]

The lanthanoid cobaltites LnCoOj show a strong spin correlation with a number... [Pg.254]

Y(Mn,Fe)2- Substitution within the Mn lattice can also lead to lattice contraction and hence to a destabilization of Mn moments. An example is Y(Mhi combined neutron scattering and pSR study was carried out by Cywinski et al. (1990). Neutrons show that already at x = 0.025 the Mn moment is reduced to 0.2pb and the system reverts to Pauli paramagnetic behavior. They further revealed the presence of AFM correlations over a wide temperature range, but could not distinguish between static (frozen spins) or dynamic (longitudinally fluctuating spins) correlations. With the help of TF-p.SR measurements it was possible to pin down the dynamical nature of the correlations. The temperature dependence of relaxation rate followed a simple power law (A(J) oc T " )... [Pg.199]

This case occurs when we treat the singlet excited states of the vdW dimers and complexes (the so-called triplet-triplet (TT) excitations). The spin-correlator analysis for the vdW dimers was shortly mentioned in [61] where the singlet hssion models are discussed. In context of the EUE problems we can connect spin correlators with the Ngff measure of the TT-type excited states. For instance, when no charge transfer effects are involved, the local spins (S ) = (S ) provide an estimate... [Pg.169]

For temperatures above one has exponential decay of the spin correlations with a characteristic time t and critical slowing down with a divergence of t at T, as expected from dynamical scaling (Hohenberg and Halperin 1977) ... [Pg.239]

If spin contamination is small, continue to use unrestricted methods, preferably with spin-annihilated wave functions and spin projected energies. Do not use spin projection with DFT methods. When the amount of spin contamination is more significant, use restricted open-shell methods. If all else fails, use highly correlated methods. [Pg.230]

K. Binder, P. C. Hoehenberg. Phase transitions and static spin correlations in Ising models with free surfaces. Phys Rev B 6 3461-3487, 1972. [Pg.628]

Since the coiTelation between opposite spins has both intra- and inter-orbital contributions, it will be larger than the correlation between electrons having the same spin. The Pauli principle (or equivalently the antisymmetry of the wave function) has the consequence that there is no intraorbital conelation from electron pairs with the same spin. The opposite spin correlation is sometimes called the Coulomb correlation, while the same spin correlation is called the Fermi correlation, i.e. the Coulomb correlation is the largest contribution. Another way of looking at electron correlation is in terms of the electron density. In the immediate vicinity of an electron, here is a reduced probability of finding another electron. For electrons of opposite spin, this is often referred to as the Coulomb hole, the corresponding phenomenon for electrons of the same spin is the Fermi hole. [Pg.99]

Finally, if there are a large number of stored patterns, there may enough mutual interference to give rise to local minima, or inetastable states - sometimes also called spin glass states to emphasize the similarity between the formalisms of Hopfield nets and spin glasses - that are not correlated with any subset of the set of stored patterns [amitSSb]. [Pg.524]

In a famous paper, Bell [bell64] showed that locality and the notion that the components of the particles spins are determinate are fundamentally incompatible with the spin correlations as predicted by quantum mechanics. Bell s result, in effect, rules out the possibility of having a local, deterministic theory. [Pg.677]

A good correlation with ordinary Hammett a values was based on 16 well-behaved substituents, and p-SOMe conformed well to this. Various other substituents showed deviations which were attributed to enhanced + R effects. These included p-SPh and this was explained in terms of 7t(pd) bonding, which was thus taken to play no part in the effect of p-SOMe on the methyl hyperfine splitting. More recently several 4-substituted benzyl radicals of the type RSO C6H4CH2 (n — 0,1 or 2 R = Me, Ph, Tol, COMe or OMe) have been examined by ESR spectroscopy249. The ability to delocalize spin density onto the substituent decreases in general as n increases and the effect of R depends on the oxidation state of sulfur. These authors have devised a new scale of substituent effects (sigma dot... [Pg.534]

The significance of n.m.r. spectroscopy for structural elucidation of carbohydrates can scarcely be underestimated, and the field has become vast with ramifications of specialized techniques. Although chemical shifts and spin couplings of individual nuclei constitute the primary data for most n.m.r.-spectral analyses, other n.m.r. parameters may provide important additional data. P. Dais and A. S. Perlin (Montreal) here discuss the measurement of proton spin-lattice relaxation rates. The authors present the basic theory concerning spin-lattice relaxation, explain how reliable data may be determined, and demonstrate how these rates can be correlated with stereospecific dependencies, especially regarding the estimation of interproton distances and the implications of these values in the interpretation of sugar conformations. [Pg.407]

The reaction of eq. 16.9 will regenerate the antioxidant Arj-OH at the expense of the antioxidant At2-OH. Despite the fact that such regeneration reactions are not simple electron transfer reactions, the rate of reactions like that of eq. 16.9 has been correlated with the E values for the respective Ar-0. Thermodynamic and kinetic effects have not been clearly separated for such hierarchies, but for a number of flavonoids the following pecking order was established in dimethyl formamid (DMF) by a combination of electrolysis for generating the a-tocopherol and the flavonoid phenoxyl radicals and electron spin resonance (ESR) spectroscopy for detection of these radicals (Jorgensen et al, 1999) ... [Pg.324]

However, there is no indication that the presence of the observed signals correlates with the polymerization efficiency of the catalyst. In fact, systems which exhibit these signals are less effective catalysts and in some cases do not even polymerize ethylene under the chosen conditions. In contrast, systems without EPR signals correlated to Ti species are foimd to be catalytically active. It has to be emphasized at this point that the lack of an ESR signal associated to Ti + ions, in cases where no additional argon or electron bombardment has been applied, cannot be interpreted as an indication of the absence of Ti + centers at the surface. It has been discussed in the literature that small spin-lattice-relaxation times, dipole coupling, and super exchange may leave a very small fraction of Ti " that is detectable in an EPR experiment [115,116]. From a combination of XPS and EPR results it unhkely that Ti " centers play an important role in the catalytic activity of the catalysts. [Pg.136]

Among the many ways to go beyond the usual Restricted Hartree-Fock model in order to introduce some electronic correlation effects into the ground state of an electronic system, the Half-Projected Hartree-Fock scheme, (HPHF) proposed by Smeyers [1,2], has the merit of preserving a conceptual simplicity together with a relatively straigthforward determination. The wave-function is written as a DODS Slater determinant projected on the spin space with S quantum number even or odd. As a result, it takes the form of two DODS Slater determinants, in which all the spin functions are interchanged. The spinorbitals have complete flexibility, and should be determined from applying the variational principle to the projected determinant. [Pg.175]

The effectiveness of a crude oil demulsifier is correlated with the lowering of the shear viscosity and the dynamic tension gradient of the oil-water interface. The interfacial tension relaxation occurs faster with an effective demulsifier [1714]. Short relaxation times imply that interfacial tension gradients at slow film thinning are suppressed. Electron spin resonance experiments with labeled demulsifiers indicate that the demulsifiers form reverse micellelike clusters in the bulk oil [1275]. The slow unclustering of the demulsifier at the interface appears to be the rate-determining step in the tension relaxation process. [Pg.327]

The isomer shift is considered the key parameter for the assignment of oxidation states from Mossbauer data. The early studies, following the first observation of an isomer shift for Fe203 [7], revealed a general correlation with the (formal) oxidation state of iron. However, isomer shifts have also been found to depend on the spin state of the Mossbauer atom, the number of ligands, the cr-donor and the... [Pg.83]

Fig. 2.7.2 Diffusion-relaxation correlation se- The detection (2nd) segment for both is a quences using pulsed field gradients, (a) The CPMG pulse train that is similar to that in first segment is a spin-echo with the echo Figure 2.7.1. The amplitude or the duration of appearing at a time 2tcpi after the first pulse, the gradient pairs in both sequences is (b) The first segment is a stimulated echo incremented to vary the diffusion effects, appearing at a time tcpi after the third pulse. Fig. 2.7.2 Diffusion-relaxation correlation se- The detection (2nd) segment for both is a quences using pulsed field gradients, (a) The CPMG pulse train that is similar to that in first segment is a spin-echo with the echo Figure 2.7.1. The amplitude or the duration of appearing at a time 2tcpi after the first pulse, the gradient pairs in both sequences is (b) The first segment is a stimulated echo incremented to vary the diffusion effects, appearing at a time tcpi after the third pulse.
The relaxation of gaseous methane, ethane and propane is by the spin-rotation mechanism and each pure component can be correlated with density and temperature [15]. However, the relaxation rate is also a function of the collision cross section of each component and this must be taken into account for mixtures [16]. This is in contrast to the liquid hydrocarbons and their mixtures that relax by dipole-dipole interactions and thus correlate with the viscosity/temperature ratio. [Pg.325]

Figure 17. Contour plot of the 360MHz homonuclear spin correlation mpa of 10 (2 mg, CDCL, high-field expansion) with no delay inserted in the pulse sequence shown at the top of the figure. Assignments of cross peaks indicating coupled spins in the E-ring are shown with tljie dotted lines. The corresponding region of the one-dimensional H NMR spectra is provided on the abscissa. The 2-D correlation map is composed of 128 x 512 data point spectra, each composed of 16 transients. A 4-s delay was allowed between each pulse sequence (T ) and t was incremented by 554s. Data was acquired with quadrature phase detection in both dimensions, zero filled in the t dimension, and the final 256 x 256 data was symmetrized. Total time of the experiment was 2.31 h (17). Figure 17. Contour plot of the 360MHz homonuclear spin correlation mpa of 10 (2 mg, CDCL, high-field expansion) with no delay inserted in the pulse sequence shown at the top of the figure. Assignments of cross peaks indicating coupled spins in the E-ring are shown with tljie dotted lines. The corresponding region of the one-dimensional H NMR spectra is provided on the abscissa. The 2-D correlation map is composed of 128 x 512 data point spectra, each composed of 16 transients. A 4-s delay was allowed between each pulse sequence (T ) and t was incremented by 554s. Data was acquired with quadrature phase detection in both dimensions, zero filled in the t dimension, and the final 256 x 256 data was symmetrized. Total time of the experiment was 2.31 h (17).

See other pages where Spin correlation with is mentioned: [Pg.6]    [Pg.6]    [Pg.197]    [Pg.60]    [Pg.6]    [Pg.6]    [Pg.197]    [Pg.60]    [Pg.1515]    [Pg.1531]    [Pg.1611]    [Pg.131]    [Pg.492]    [Pg.396]    [Pg.151]    [Pg.59]    [Pg.60]    [Pg.50]    [Pg.71]    [Pg.88]    [Pg.17]    [Pg.191]    [Pg.255]    [Pg.179]    [Pg.163]    [Pg.207]    [Pg.534]    [Pg.428]    [Pg.212]    [Pg.666]    [Pg.88]    [Pg.209]    [Pg.278]    [Pg.460]    [Pg.100]   


SEARCH



Spin correlations

© 2024 chempedia.info