Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Proton spin-lattice relaxation rate

PROTON SPIN-LATTICE RELAXATION RATES IN THE STRUCTURAL ANALYSIS OF CARBOHYDRATE MOLECULES... [Pg.125]

The proton spin-lattice relaxation-rate (R,) is a well established, nuclear magnetic resonance (n.m.r.) parameter for structural, configurational, and conformational analysis of organic molecules in solution. " As yet, however, its utility has received little attention in the field of carbohydrate chemistry,... [Pg.125]

Proton Spin—Lattice Relaxation Rates in the Structural Analysis of Carbohydrate Molecules in Solution... [Pg.405]

The significance of n.m.r. spectroscopy for structural elucidation of carbohydrates can scarcely be underestimated, and the field has become vast with ramifications of specialized techniques. Although chemical shifts and spin couplings of individual nuclei constitute the primary data for most n.m.r.-spectral analyses, other n.m.r. parameters may provide important additional data. P. Dais and A. S. Perlin (Montreal) here discuss the measurement of proton spin-lattice relaxation rates. The authors present the basic theory concerning spin-lattice relaxation, explain how reliable data may be determined, and demonstrate how these rates can be correlated with stereospecific dependencies, especially regarding the estimation of interproton distances and the implications of these values in the interpretation of sugar conformations. [Pg.407]

NMRD studies (0.01-30 MHz) on bentonite suspensions showed that the water-proton spin-lattice relaxation rates are dominated by magnetic interactions with paramagnetic centers entrapped in the mineral matrix (89). The 1/Ti values were linearly dependent on the concentration of the... [Pg.276]

Fig. 8. The water-proton spin-lattice relaxation rates vs. magnetic field strength plotted as the Larmor frequency at 282 K for hexacyanochromate(II) ion ( ), trioxalatochromate(III) ion ( ), and trimalonatochromate(III) ion (A). The lines were computed using translational diffusion models developed by Freed with and without the inclusion of electron spin relaxation effects 54,121). Fig. 8. The water-proton spin-lattice relaxation rates vs. magnetic field strength plotted as the Larmor frequency at 282 K for hexacyanochromate(II) ion ( ), trioxalatochromate(III) ion ( ), and trimalonatochromate(III) ion (A). The lines were computed using translational diffusion models developed by Freed with and without the inclusion of electron spin relaxation effects 54,121).
Fig. 17. The water proton spin-lattice relaxation rates as a function of magnetic field strength reported as the proton Larmor frequency in aqueous 1.8 mM samples of bovine serum albumin. The lower data set was taken on the solution, the open circles taken after the sample had been cross-linked with glutaraldehyde to stop rotational motion (89). Fig. 17. The water proton spin-lattice relaxation rates as a function of magnetic field strength reported as the proton Larmor frequency in aqueous 1.8 mM samples of bovine serum albumin. The lower data set was taken on the solution, the open circles taken after the sample had been cross-linked with glutaraldehyde to stop rotational motion (89).

See other pages where Proton spin-lattice relaxation rate is mentioned: [Pg.127]    [Pg.129]    [Pg.131]    [Pg.133]    [Pg.135]    [Pg.137]    [Pg.139]    [Pg.141]    [Pg.143]    [Pg.145]    [Pg.147]    [Pg.151]    [Pg.153]    [Pg.157]    [Pg.159]    [Pg.161]    [Pg.163]    [Pg.165]    [Pg.100]   
See also in sourсe #XX -- [ Pg.168 ]

See also in sourсe #XX -- [ Pg.45 , Pg.152 ]




SEARCH



Derivatives, proton spin-lattice relaxation rates

PROTON SPIN RELAXATION

Proton rates

Proton relaxation

Proton relaxation rate

Proton relaxivity

Proton spin-lattice relaxation

Proton spin-lattice relaxation rate conformations

Proton spins

Protons spinning

Rates protonation

Relaxation rates

Spin lattice

Spin relaxation rate

Spin-lattice relaxation

Spin-lattice relaxation rate

Spinning Rate

© 2024 chempedia.info