Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Spectroscopy magnetic resonance... Raman

Adsorption (Chemical Engineering) Batch Processing Catalysis, Homogeneous Catalysis, Industrial Electrochemistry Infrared Spectroscopy Mossbauer Spectroscopy Nuclear Magnetic Resonance Raman Spectroscopy Scanning Electron Microscopy Surface Chemistry... [Pg.127]

The section on Spectroscopy has been retained but with some revisions and expansion. The section includes ultraviolet-visible spectroscopy, fluorescence, infrared and Raman spectroscopy, and X-ray spectrometry. Detection limits are listed for the elements when using flame emission, flame atomic absorption, electrothermal atomic absorption, argon induction coupled plasma, and flame atomic fluorescence. Nuclear magnetic resonance embraces tables for the nuclear properties of the elements, proton chemical shifts and coupling constants, and similar material for carbon-13, boron-11, nitrogen-15, fluorine-19, silicon-19, and phosphoms-31. [Pg.1284]

Ideally, a mass spectmm contains a molecular ion, corresponding to the molecular mass of the analyte, as well as stmcturaHy significant fragment ions which allow either the direct deterrnination of stmcture or a comparison to Hbraries of spectra of known compounds. Mass spectrometry (ms) is unique in its abiUty to determine direcdy the molecular mass of a sample. Other techniques such as nuclear magnetic resonance (nmr) and infrared spectroscopy give stmctural information from which the molecular mass may be inferred (see Infrared technology and raman spectroscopy Magnetic spin resonance). [Pg.539]

The crystalline mineral silicates have been well characterized and their diversity of stmcture thoroughly presented (2). The stmctures of siHcate glasses and solutions can be investigated through potentiometric and dye adsorption studies, chemical derivatization and gas chromatography, and laser Raman, infrared (ftir), and Si Fourier transform nuclear magnetic resonance ( Si ft-nmr) spectroscopy. References 3—6 contain reviews of the general chemical and physical properties of siHcate materials. [Pg.3]

In this chapter, three methods for measuring the frequencies of the vibrations of chemical bonds between atoms in solids are discussed. Two of them, Fourier Transform Infrared Spectroscopy, FTIR, and Raman Spectroscopy, use infrared (IR) radiation as the probe. The third, High-Resolution Electron Enetgy-Loss Spectroscopy, HREELS, uses electron impact. The fourth technique. Nuclear Magnetic Resonance, NMR, is physically unrelated to the other three, involving transitions between different spin states of the atomic nucleus instead of bond vibrational states, but is included here because it provides somewhat similar information on the local bonding arrangement around an atom. [Pg.413]

The methods used to characterise polymers are partly familiar ones like X-ray diffraction, Raman spectroscopy and electron microscopy, partly less familiar but widespread ones like neutron scattering and nuclear magnetic resonance, and partly... [Pg.311]

The modern electronic industry has played a very important role in the development of instrumentation based on physical-analytical methods As a result, a rapid boom in the fields of infrared, nuclear magnetic resonance (NMR), Raman, and mass spectroscopy and vapor-phase (or gas-liquid) chromatography has been observed. Instruments for these methods have become indispensable tools in the analytical treatment of fluonnated mixtures, complexes, and compounds The detailed applications of the instrumentation are covered later in this chapter. [Pg.1023]

As a prelude to the discussion it is necessary to consider the definition of orientation in terms of the Euler angles, and the definition ofan orientation distribution function in terms ofan expansion ofLegendre functions. These definitions set the scene for examining the information which can be obtained from different spectroscopic techniques. In this review, infra-red and Raman spectroscopy and nuclear magnetic resonance, will be considered. [Pg.81]

In this review the definition of orientation and orientation functions or orientation averages will be considered in detail. This will be followed by a comprehensive account of the information which can be obtained by three spectroscopic techniques, infra-red and Raman spectroscopy and broad line nuclear magnetic resonance. The use of polarized fluorescence will not be discussed here, but is the subject of a contemporary review article by the author and J. H. Nobbs 1. The present review will be completed by consideration of the information which has been obtained on the development of molecular orientation in polyethylene terephthalate and poly(tetramethylene terephthalate) where there are also clearly defined changes in the conformation of the molecule. In this paper, particular attention will be given to the characterization of biaxially oriented films. Previous reviews of this subject have been given by the author and his colleagues, but have been concerned with discussion of results for uniaxially oriented systems only2,3). [Pg.83]

In this review recent theoretical developments which enable quantitative measures of molecular orientation in polymers to be obtained from infra-red and Raman spectroscopy and nuclear magnetic resonance have been discussed in some detail. Although this is clearly a subject of some complexity, it has been possible to show that the systematic application of these techniques to polyethylene terephthalate and polytetramethylene terephthalate can provide unique information of considerable value. This information can be used on the one hand to gain an understanding of the mechanisms of deformation, and on the other to provide a structural understanding of physical properties, especially mechanical properties. [Pg.114]

Spectroscopy, 490. See also 13C NMR spectroscopy FT Raman spectroscopy Fourier transform infrared (FTIR) spectrometry H NMR spectroscopy Infrared (IR) spectroscopy Nuclear magnetic resonance (NMR) spectroscopy Positron annihilation lifetime spectroscopy (PALS) Positron annihilation spectroscopy (PAS) Raman spectroscopy Small-angle x-ray spectroscopy (SAXS) Ultraviolet spectroscopy Wide-angle x-ray spectroscopy (WAXS)... [Pg.601]

This comprehensive review of theoretical models and techniques will be invaluable to theorists and experimentalists in the fields of infrared and Raman spectroscopy, nuclear magnetic resonance, electron spin resonance and flame thermometry. It will also be useful to graduate students of molecular dynamics and spectroscopy. [Pg.301]

In this chapter we have limited ourselves to the most common techniques in catalyst characterization. Of course, there are several other methods available, such as nuclear magnetic resonance (NMR), which is very useful in the study of zeolites, electron spin resonance (ESR) and Raman spectroscopy, which may be of interest for certain oxide catalysts. Also, all of the more generic tools from analytical chemistry, such as elemental analysis, UV-vis spectroscopy, atomic absorption, calorimetry, thermogravimetry, etc. are often used on a routine basis. [Pg.166]

Advanced techniques like molecularly imprinted polymers (MIPs), infrared/near infrared spectroscopy (FT-IR/NIR), high resolution mass spectrometry, nuclear magnetic resonance (NMR), Raman spectroscopy, and biosensors will increasingly be applied for controlling food quality and safety. [Pg.314]

R.J. Lehnert, P.J. Hendra, N. Everall and N.J. Clayden, Comparative quantitative study on the crystallinity of poly(tetrafluoroethylene) including Raman, infra-red and F nuclear magnetic resonance spectroscopy, Polymer, 38(7) (1997) 1521-1535. [Pg.12]


See other pages where Spectroscopy magnetic resonance... Raman is mentioned: [Pg.2779]    [Pg.6515]    [Pg.167]    [Pg.2778]    [Pg.41]    [Pg.363]    [Pg.332]    [Pg.138]    [Pg.1]    [Pg.509]    [Pg.140]    [Pg.444]    [Pg.454]    [Pg.167]    [Pg.148]    [Pg.418]    [Pg.435]    [Pg.59]    [Pg.172]    [Pg.439]    [Pg.480]    [Pg.26]    [Pg.218]    [Pg.187]    [Pg.4]    [Pg.257]   


SEARCH



Resonance Raman

Resonant Raman spectroscopy

© 2024 chempedia.info