Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Spectroscopic optical model

Spectroscopic dlipsometry is sensitive to the dielectric functions of the different materials used in a layer stack. But it is not a compositional analytical technique. Combination with one of the compositional techniques, e. g. AES or XPS and with XTEM, to furnish information about the vertical structure, can provide valuable additional information enabling creation of a suitable optical model for an unknown complex sample structure. [Pg.267]

Significantly, spectroscopic, optical rotatory, and magnetic properties of metalloenzymes (1) suggest that characteristics of their metal atoms are also aflFected uniquely by the protein environment at active enzymic sites. Moreover, while the physical properties of metalloenzymes are quite unusual when compared with those of simple metal complexes, substrates or inhibitors may simplify their absorption and rotatory dispersion spectra to resemble more nearly those of well defined model systems (4). Taken together, such observations have emphasized the singular nature of metals and their coordination in metalloenzymes, perhaps reflecting features of their participation in catalysis. [Pg.188]

Three experimental lines of approach have been used to study the evolution of spectroscopic strength with asymmetry the dispersive optical model, nucleon knockout reactions, and... [Pg.178]

Based on the fundamental dipole moment concepts of mesomeric moment and interaction moment, models to explain the enhanced optical nonlinearities of polarized conjugated molecules have been devised. The equivalent internal field (EIF) model of Oudar and Chemla relates the j8 of a molecule to an equivalent electric field ER due to substituent R which biases the hyperpolarizabilities (28). In the case of donor-acceptor systems anomalously large nonlinearities result as a consequence of contributions from intramolecular charge-transfer interaction (related to /xjnt) and expressions to quantify this contribution have been obtained (29). Related treatments dealing with this problem have appeared one due to Levine and Bethea bearing directly on the EIF model (30), another due to Levine using spectroscopically derived substituent perturbations rather than dipole moment based data (31.) and yet another more empirical treatment by Dulcic and Sauteret involving reinforcement of substituent effects (32). [Pg.64]

As already mentioned, any multivariate analysis should include some validation, that is, formal testing, to extrapolate the model to new but similar data. This requires two separate steps in the computation of each model component calibration, which consists of finding the new components, and validation, which checks how well the computed components describe the new data. Each of these two steps needs its own set of samples calibration samples or training samples, and validation samples or test samples. Computation of spectroscopic data PCs is based solely on optic data. There is no explicit or formal relationship between PCs and the composition of the samples in the sets from which the spectra were measured. In addition, PCs are considered superior to the original spectral data produced directly by the NIR instrument. Since the first few PCs are stripped of noise, they represent the real variation of the spectra, presumably caused by physical or chemical phenomena. For these reasons PCs are considered as latent variables as opposed to the direct variables actually measured. [Pg.396]

For a same molecular ratio of aqueous NaY solutions (Y = OH, Cl), experimental data underlines specific effects of nascent OH radicals on transient UV and near-IR electronic configurations. Complex investigations of PHET reactions in the polarization CTTS well of aqueous CT and OH ions are in progress. We should wonder whether a change in the size of ionic radius (OH -1.76 A vs Cl" 2.35 A) or in the separation of the energy levels influence early branchings of ultrafast electronic trajectories. A key point of these studies is that the spectroscopic predictions of computed model-dependent analysis are compared to a direct identification of transient spectral bands, using a cooled Optical Multichannel Analyzer... [Pg.235]

INTRODUCTION. A standard and universal description of various nonlinear spectroscopic techniques can be given in terms of the optical response functions (RFs) [1], These functions allow one to perturbatively calculate the nonlinear response of a material system to external time-dependent fields. Normally, one assumes that the Born-Oppenheimer approximation is adequate and it is sufficient to consider the ground and a certain excited electronic state of the system, which are coupled via the laser fields. One then can model the ground and excited state Hamiltonians via a collection of vibrational modes, which are usually assumed to be harmonic. The conventional damped oscillator is thus the standard model in this case [1]. [Pg.311]

This chapter deals with silyl-substituted carbocations. In Section II results of quantum chemical ab initio calculations of energies and structures of silyl-substituted carbocations are summarized1. Throughout the whole chapter results of ab initio calculations which relate directly to the experimental observation of silyl-substituted carbocations and their reactions are reviewed. Section m reports on gas phase studies and Section IV on solvolytic investigations of reactions which involve silyl-substituted carbocation intermediates and transition states. Section V summarizes the structure elucidation studies on stable silyl-substituted carbocations. It includes ultra-fast optical spectroscopic methods for the detection of transient intermediates in solution, NMR spectroscopic investigations of silyl-substituted carbocations in superacids and non-nucleophilic solvents, concomitant computational studies of model cation and X-ray crystallography of some silyl-substituted carbocations which can be prepared as crystals of salts. [Pg.596]

Automatic spectropolarimeters are available for the measurement of optical rotation as a function of wavelength (in the region 180-700 nm), enabling optical rotatory dispersion (ORD) curves to be recorded. Models are also available (e.g. Japan Spectroscopic Co. Ltd) for the measurement of circular dichroism (CD) curves in the wavelength region of 180-1000 nm, and 700-2000 nm. Authoritative accounts of the value of ORD and CD data in studies on the structure... [Pg.248]

Spectroscopic methods can yield the required understanding of the complexes. Especially optical spectroscopy provides very detailed information about electronic and vibronic structures, in particular, when highly resolved spectra are available. However, without the development of suitable models, which are usually based on perturbation theory, group theory, and recently also on ab-initio calculations, a thorough understanding of the complexes is very difficult to achieve. In this volume and in a subsequent one some leading researchers will show that such a detailed description of... [Pg.217]

The purpose of this paper is to examine by calculations of simple models the spectroscopic behaviour expected of mixed crystals under varying conditions of guest concentration and of guest optical properties. We shall begin by reviewing some points of the theory of pure crystals, then go on to introduce the onedimensional model, apply it to a series of representative examples, and finally consider its relevance to real mixed crystals. [Pg.28]

From the initial measurements of optical rotation through the present, a major goal has been the development of useful relationships between chiral-selective spectroscopic measurements and absolute structure. The most extensive early theoretical model of optical rotation was that of Kuhn and Bein in the 1930s.5 6 This strictly classical model was used to predict the sign of the optical rotation at the sodium-D line for the absolute structures of tris-bidentate chelated structures such as tris(ethylenediamine)cobalt(III) ion (Figure 5.2). Just as was the case for chiral... [Pg.144]


See other pages where Spectroscopic optical model is mentioned: [Pg.1380]    [Pg.170]    [Pg.179]    [Pg.464]    [Pg.371]    [Pg.357]    [Pg.2985]    [Pg.648]    [Pg.738]    [Pg.187]    [Pg.151]    [Pg.17]    [Pg.13]    [Pg.85]    [Pg.7]    [Pg.150]    [Pg.159]    [Pg.629]    [Pg.113]    [Pg.629]    [Pg.80]    [Pg.215]    [Pg.194]    [Pg.618]    [Pg.96]    [Pg.220]    [Pg.265]    [Pg.319]    [Pg.373]    [Pg.514]    [Pg.347]    [Pg.253]    [Pg.359]    [Pg.87]    [Pg.466]    [Pg.68]    [Pg.69]    [Pg.12]   
See also in sourсe #XX -- [ Pg.300 ]




SEARCH



Optical model

Spectroscopic Modeling

© 2024 chempedia.info