Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Spectroscopic Data Systems

Specinfo, from Chemical Concepts, is a factual database information system for spectroscopic data with more than 660000 digital spectra of 150000 associated structures [24], The database covers nuclear magnetic resonance spectra ( H-, C-, N-, O-, F-, P-NMR), infrared spectra (IR), and mass spectra (MS). In addition, experimental conditions (instrument, solvent, temperature), coupling constants, relaxation time, and bibliographic data are included. The data is cross-linked to CAS Registry, Beilstein, and NUMERIGUIDE. [Pg.258]

Theoretical predictions must be compared to appropriate high quality experimental results. Allowed transitions (having oscillator strength greater than 0) may be compared to standard one-photon spectroscopic data. However, forbidden transitions must be compared to multi-photon experiments, and both types must be considered before a complete characterization of a system s excited states can be made. [Pg.225]

The process we have followed Is Identical with the one we used previously for the uranium/oxygen (U/0) system (1-2) and Is summarized by the procedure that Is shown In Figure 1. Thermodynamic functions for the gas-phase molecules were obtained previously (3) from experimental spectroscopic data and estimates of molecular parameters. The functions for the condensed phase have been calculated from an assessment of the available data, Including the heat capacity as a function of temperature (4). The oxygen potential Is found from extension Into the liquid phase of a model that was derived for the solid phase. Thus, we have all the Information needed to apply the procedure outlined In Figure 1. [Pg.128]

Since the central carbon of tricoordinated carbocations has only three bonds and no other valence electrons, the bonds are sp and should be planar. Raman, IR, and NMR spectroscopic data on simple alkyl cations show this to be so. In methylcycohexyl cations there are two chair conformations where the carbon bearing the positive charge is planar (9 and 10), and there is evidence that difference is hyperconjugation make 10 more stable. Other evidence is that carbocations are difficult to form at bridgehead atoms in [2.2.1] systems, where they cannot be planar (see p. 397). ° Bridgehead carbocations are known, however, as in [2.1.1]... [Pg.224]

Treichel, Knebel, and Hess provided further data on these systems by studying reactions of [Pt(PRj)2(CNCH3)2] with various halide ions and with pseudohalides. A series of five-coordinate complexes were obtained from reactions with iodide ion (PRj = PPhj, PPh2Me, PPhMe2, PEtj), and a study was carried out to measure the stability of these complexes with respect to ligand loss 155). Stability constants for several of these complexes were obtained from spectroscopic data. Other reactants (Cl, Br, CN, SCN) generally yielded the appropriate [Pt(PRj)2(CNCH3)X] species, as expected. [Pg.78]

With sp bond angles calculated to be around 162°, macrocycle 131 would be highly strained and was therefore expected to be quite reactive [79]. The octa-cobalt complex 132, on the other hand, should be readily isolable. Indeed, 132 was prepared easily from 133 in five steps, and was isolated as stable, deep maroon crystals (Scheme 30). All spectroscopic data supported formation of the strain-free dimeric structure. Unfortunately, all attempts to liberate 132 from the cobalt units led only to insoluble materials. Diederich et al. observed similar problems when trying to prepare the cyclocarbons [5c]. Whether the failure to prepare these two classes of macrocycles is due to the extreme reactivity of the distorted polyyne moiety or to the lack of a viable synthetic route is not certain. Thus, isolation and characterization of smaller bent hexatriyne- and octatetrayne-containing systems is an important goal that should help answer these questions. [Pg.124]

The structures of the new bicyclic peroxides have been established by the usual combination of physical techniques and chemical transformations. Here we highlight features of the H and 13C n.m.r. spectroscopic data that provide the best characterization of these compounds their reactions are discussed later. Information about the C-O-O-C dihedral angle in organic peroxides is potentially available from photoelectron (PE) spectroscopy. Measurements on comparatively rigid systems play an important part in establishing a soundly based experimental correlation, and the results obtained on several of these bicyclic peroxides are presented in this section also. [Pg.149]

From the above discussion, we can see that the purpose of this paper is to present a microscopic model that can analyze the absorption spectra, describe internal conversion, photoinduced ET, and energy transfer in the ps and sub-ps range, and construct the fs time-resolved profiles or spectra, as well as other fs time-resolved experiments. We shall show that in the sub-ps range, the system is best described by the Hamiltonian with various electronic interactions, because when the timescale is ultrashort, all the rate constants lose their meaning. Needless to say, the microscopic approach presented in this paper can be used for other ultrafast phenomena of complicated systems. In particular, we will show how one can prepare a vibronic model based on the adiabatic approximation and show how the spectroscopic properties are mapped onto the resulting model Hamiltonian. We will also show how the resulting model Hamiltonian can be used, with time-resolved spectroscopic data, to obtain internal... [Pg.7]

For the 4d series the M(V) oxidation state is found for Mo, Tc, and Ru as hexafluoro anions. These MFe complexes are all quite strongly oxidising, and their stability again decreases towards the end of the series. Some spectroscopic data are available for all three systems and are reviewed below. [Pg.124]


See other pages where Spectroscopic Data Systems is mentioned: [Pg.1060]    [Pg.1947]    [Pg.2209]    [Pg.113]    [Pg.49]    [Pg.249]    [Pg.6]    [Pg.753]    [Pg.187]    [Pg.1050]    [Pg.176]    [Pg.368]    [Pg.386]    [Pg.417]    [Pg.109]    [Pg.556]    [Pg.520]    [Pg.1050]    [Pg.214]    [Pg.190]    [Pg.727]    [Pg.32]    [Pg.118]    [Pg.734]    [Pg.19]    [Pg.983]    [Pg.92]    [Pg.34]    [Pg.4]    [Pg.128]    [Pg.165]    [Pg.17]    [Pg.189]    [Pg.14]    [Pg.141]    [Pg.483]   


SEARCH



Data systems

Spectroscopic Data Systems Infrared

Spectroscopic data

© 2024 chempedia.info