Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Source spectral line

As mentioned in item 5 of Section 9.1, the light sources used in atomic absorption instruments are sources that emit spectral lines. Specifically, the spectral lines used are the lines in the line spectrum of the analyte being measured. These lines are preferred because they represent the precise wavelengths that are needed for the absorption in the flame, since the flame contains this analyte. Spectral line sources emit these wavelengths because they themselves contain the analyte to be measured, and when the lamp is on, these internal atoms are raised to the excited state and emit their line spectrum when they return [Pg.249]

TABLE 9.1 Listing Showing Which Oxidant Is Recommended for the Various Metals and Nonmetals Analyzed by Flame AA [Pg.250]

Antimony, arsenic, bismuth, cadmium, calcium, cesium, chromium, cobalt, copper, gold, indium, iridium, iron, lead, lithium, magnesium, manganese, mercury, nickel, palladium, platinum, potassium, rhodium, rubidium, ruthenium, selenium, silver, sodium, tellurium, thallium, zinc [Pg.250]

Aluminum, barium, beryllium, boron, dysprosium, erbium, europium, gadolinium, gallium, germanium, hafnium, holmium, lanthanum, molybdenum, neodymium, niobium, phosphorus, praseodymium, rhenium, samarium, scandium, silicon, strontium, tantalum, terbium, thulium, tin, titanium, tungsten, uranium, vanadium, ytterbium, yttrium, zirconium [Pg.250]

The hollow cathode lamp must contain the element being measured. A typical atomic absorption laboratory has a number of different lamps in stock that can be interchanged in the instrument, depending on what metal is being determined. Some lamps are multielement, which means that several different specified kinds of atoms are present in the lamp and are all raised to the excited state when the lamp is on. The light emitted by such a lamp consists of the line spectra of all the kinds of atoms present. One may think that the lines of the elements other than the analyte might interfere with the measurement of [Pg.250]


A distinction must be made between continuous sources (hydrogen or deuterium lamps, incandescent tungsten lamps, high pressure xenon lamps) and spectral line sources (mercury lamps), which deliver spectrally purer light in the region of their emission lines. [Pg.20]

Spectral line sources are used as light sources in atomic absorption instruments rather than the continuum sources used for UV-VIS molecular absorption instruments, and several atomic emission techniques require no light source at all apart from the thermal energy source. [Pg.245]

The most widely used spectral line source for atomic absorption spectroscopy is the hollow cathode lamp. An illustration of this lamp is shown in Figure 9.5. The internal atoms mentioned above are contained in a cathode, a negative electrode. This cathode is a hollowed cup, pictured with a C shape in the figure. The internal excitation and emission process occurs inside this cup when the lamp is on and the anode (positive electrode) and cathode are connected to a high voltage. The light is emitted as shown. [Pg.250]

The atomic absorption characteristics of technetium have been investigated with a technetium hollow-cathode lamp as a spectral line source. The sensitivity for technetium in aqueous solution is 3.0 /ig/ml in a fuel-rich acetylene-air flame for the unresolved 2614.23-2615.87 A doublet under the optimum operating conditions. Only calcium, strontium, and barium cause severe technetium absorption suppression. Cationic interferences are eliminated by adding aluminum to the test solutions. The atomic absorption spectroscopy can be applied to the determination of technetium in uranium and its alloys and also successfully to the analysis of multicomponent samples. [Pg.134]

Figure 2 Schematic representation of the spectral region isolated by the monochromator when a continuum source is used (left) and when a spectral line source is used (right)... Figure 2 Schematic representation of the spectral region isolated by the monochromator when a continuum source is used (left) and when a spectral line source is used (right)...
Flame AFS combines features of both AAS and FES. The excitation of atoms is by the absorption of light. When individual element spectral line sources are used, the spectral selectivity should be as high as that in AAS, although scatter may be more of a problem in AFS. Quantification is by comparison of the intensity of fluorescence emitted by samples with that emitted by standards of known concentration. At low determinant concentrations, it is necessary to discriminate between small fluorescence emission signals and the background light levels associated with thermally excited emission from the flame. Therefore in AFS, as in FES, it is desirable to have low flame background emission. This is discussed further in Chapter 2, where instrumental aspects of flame spectrometric techniques are discussed. [Pg.8]

For some elements such as arsenic and selenium, which have their main atomic absorption wavelengths lying on the edge of the vacuum UV, the performance of hollow cathode lamps is often poor, the lamps displaying low intensity and poor stability. This, plus the search for more intense sources for AFS (see Chapter 1, section 10), resulted in the development of microwave-powered electrodeless discharge lamps (EDLs) as spectral line sources towards the end of the 1960s.3-5... [Pg.11]

When a spectral line source is brought into a magnetic field, the spectral lines start to display hyperftne structures, which is known as the Zeeman effect. In order to explain these hyperftne structures it is accepted that the electron rotates around its axis and has a spin momentum S for which ... [Pg.6]

Ng K. C., Ali A. H., Barber T. E. and Winefordner J. D. (1988) Multiple mode semiconductor diode laser as a spectral line source for graphite furnace atomic absorption spectroscopy, Anal Chem 62 1893-1895. [Pg.324]

A variety of excitation sources may be used for atomic fluorescence since the prime requirements are high intensity and stability. A narrow spectral line source, such as those used for atomic absorption, is not essential. Some of the sources that have been used successfully for atomic fluorescence include the following. [Pg.304]


See other pages where Source spectral line is mentioned: [Pg.605]    [Pg.249]    [Pg.258]    [Pg.431]    [Pg.1112]    [Pg.208]    [Pg.208]   
See also in sourсe #XX -- [ Pg.20 ]

See also in sourсe #XX -- [ Pg.20 ]

See also in sourсe #XX -- [ Pg.20 ]




SEARCH



Line sources

Spectral distribution line sources

Spectral line sources modulation

© 2024 chempedia.info