Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Specific orientation

This approach is more close to X-ray stereo imaging and caimot reach enough depth resolution. There are also several systems with linear movement (1-dimensional) through the conical beam [5] as shown in Fig.4. In this case usable depth and spatial resolution can be achieved for specifically oriented parts of the object only. [Pg.569]

Figure Bl.22.8. Sum-frequency generation (SFG) spectra in the C N stretching region from the air/aqueous acetonitrile interfaces of two solutions with different concentrations. The solid curve is the IR transmission spectrum of neat bulk CH CN, provided here for reference. The polar acetonitrile molecules adopt a specific orientation in the air/water interface with a tilt angle that changes with changing concentration, from 40° from the surface nonnal in dilute solutions (molar fractions less than 0.07) to 70° at higher concentrations. This change is manifested here by the shift in the C N stretching frequency seen by SFG [ ]. SFG is one of the very few teclnhques capable of probing liquid/gas, liquid/liquid, and even liquid/solid interfaces. Figure Bl.22.8. Sum-frequency generation (SFG) spectra in the C N stretching region from the air/aqueous acetonitrile interfaces of two solutions with different concentrations. The solid curve is the IR transmission spectrum of neat bulk CH CN, provided here for reference. The polar acetonitrile molecules adopt a specific orientation in the air/water interface with a tilt angle that changes with changing concentration, from 40° from the surface nonnal in dilute solutions (molar fractions less than 0.07) to 70° at higher concentrations. This change is manifested here by the shift in the C N stretching frequency seen by SFG [ ]. SFG is one of the very few teclnhques capable of probing liquid/gas, liquid/liquid, and even liquid/solid interfaces.
In chemicals like salol the molecules are elongated (non-spherical) and a lot of energy is needed to rotate the randomly arranged liquid molecules into the specific orientations that they take up in the crystalline solid. Then q is large, is small, and the interface is very sluggish. There is plenty of time for latent heat to flow away from the interface, and its temperature is hardly affected. The solidification of salol is therefore interface controlled the process is governed almost entirely by the kinetics of molecular diffusion at the interface. [Pg.62]

Figure 13.1 (a) Nuclear spins are oriented randomly in the absence of an external magnetic field but (b) have a specific orientation in the presence of an external field, B0. Some of the spins (red) are aligned parallel to the external field while others (blue) are antiparallel. The parallel spin state is slightly lower in energy and therefore favored. [Pg.441]

Another important sub-case, of disorder in macromolecular crystals, corresponds to the statistical occurrence of two specific orientations only, at well defined positions in a 3-D lattice, of a group of macromolecules or of each single macromolecule. [Pg.199]

Entropy of activation (A5 ), which is the difference in entropy between the starting compounds and the transition state, becomes important when two reacting molecules must approach each other in a specific orientation in order for the reaction to take place. For example, the reaction between a simple noncyclic alkyl chloride and hydroxide ion to give an alkene (17-12) takes place only if, in the transition state, the reactants are oriented as shown. [Pg.280]

Patterning of enzyme monolayers on a solid surface was carried out by photoactivation of immobilized monolayer of caged -biotin derivatives in selected areas. Specific oriented binding of enzyme-avidin conjugates could be readily made to the photoactivated zones [42]. Oriented immobilization of G-protein-coupled receptors on a solid surface was also made possible on a biotinylated surface by first immobilizing streptavidin, followed by the immobilization of biotinylated G-protein-coupled receptor [43]. [Pg.465]

Alternatively, it has been found that the Galvani potential of zero charge, in the absence of specific adsorption, equals zero. This means that there is no specific orientation of the molecules of both solvents, and the dipolar part of the Galvani potential, Eq. (12), is zero [8,22,41]. The observed discrepancies between the results of various measurements in different ITIES systems have been mainly caused by the specific adsorption [8]. Recently, the analysis of thermodynamic and free charge potentials at ITIES was performed by Volkov [42]. [Pg.30]

Ruthenium complexes containing this ligand are able to reduce a variety of double bonds with e.e. above 95%. In order to achieve high enantioselectivity, the reactant must show a strong preference for a specific orientation when complexed with the catalyst. This ordinarily requires the presence of a functional group that can coordinate with the metal. The ruthenium-BINAP catalyst has been used successfully with unsaturated amides,23 allylic and homoallylic alcohols,24 and unsaturated carboxylic acids.25... [Pg.378]

Implementation of Equation 9.18 in spectral simulators requires some extra precautions (Hagen 1981 Hagen et al. 1985d) (A) The increased periodicity now requires one half of the unit sphere to be scanned. (B) The fact that the term within the absolute-value bars in Equation 9.18 can change sign as a function of molecular orientation implies the possibility that for specific orientations the linewidth becomes equal to zero. To avoid a program crash due to a zero divide, e.g., in the expression for the lineshape in Equation 4.8, a residual linewidth W0 has to be introduced ... [Pg.161]

The optical transition moments for vibrational or electronic transitions between defect states have specific orientations with respect to the defect coordinates. The absorption strength of polarized light for each of the differently oriented centers is proportional to the square of the component of the transition moment that is along the polarization direction. Hence, a stress-induced redistribution of the defects among their different orientations will be detected as an anisotropy in the polarized optical absorption. A convenient measure of the anisotropy is the dichroic ratio, defined as... [Pg.158]


See other pages where Specific orientation is mentioned: [Pg.1583]    [Pg.145]    [Pg.700]    [Pg.444]    [Pg.61]    [Pg.210]    [Pg.204]    [Pg.441]    [Pg.513]    [Pg.145]    [Pg.280]    [Pg.30]    [Pg.120]    [Pg.163]    [Pg.543]    [Pg.142]    [Pg.106]    [Pg.8]    [Pg.150]    [Pg.384]    [Pg.5]    [Pg.6]    [Pg.8]    [Pg.103]    [Pg.104]    [Pg.200]    [Pg.512]    [Pg.309]    [Pg.53]    [Pg.296]    [Pg.240]    [Pg.491]    [Pg.233]    [Pg.157]    [Pg.135]    [Pg.259]    [Pg.269]    [Pg.288]    [Pg.54]   
See also in sourсe #XX -- [ Pg.56 ]




SEARCH



Anion-specific ionic liquid orientational

Anion-specific ionic liquid orientational analysis

Cation-specific ionic liquid orientational

Orientation Specificity of the Tetrahedron

Orientational specificity

Relation Between Glass Fibre Orientation and Specific Wear Rate for Duroid

Specific Ionic Liquid Orientational Analysis

Structural order parameters specific bond-orientational

© 2024 chempedia.info