Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Specific adsorption of electrolyte

In the absence of specific adsorption of electrolyte ions, surface charge is considered to originate from acid-base dissociation of ionizable groups. In terms of acid groups (AH) and basic groups (B), the respective pH-dependent equilibrium between surface sites and solution at the interface can be represented as... [Pg.118]

Many more-sophisticated models have been put forth to describe electrokinetic phenomena at surfaces. Considerations have included distance of closest approach of counterions, conduction behind the shear plane, specific adsorption of electrolyte ions, variability of permittivity and viscosity in the electrical double layer, discreteness of charge on the surface, surface roughness, surface porosity, and surface-bound water [7], Perhaps the most commonly used model has been the Gouy-Chapman-Stem-Grahame model 8]. This model separates the counterion region into a compact, surface-bound Stern" layer, wherein potential decays linearly, and a diffuse region that obeys the Poisson-Boltzmann relation. [Pg.119]

Double-Layer Effects in the Absence of Specific Adsorption of Electrolyte... [Pg.573]

Corrections for the (j)2 effect can be made most readily for the mercury electrode, since the variation of with E and electrolyte concentration can be obtained from electrocapillary curves, as discussed in Section 13.2. In the absence of specific adsorption of electrolyte, (f)2 can then be calculated by assuming that the GCS model applies [from (13.3.26)]. Such corrections are less frequently attempted at solid electrodes because data about the doublelayer structure at them is often lacking. Typical results showing such corrections for the reduction of Zn(II) at a Zn(Hg) electrode in aqueous solution (58) and for the reduction of several aromatic compounds in MA -dimethylformamide solution (65) are given in Table... [Pg.573]

While these results involving double-layer corrections are very useful in explaining supporting electrolyte effects on rate constants, we must be aware of several limitations in this treatment. The absence of specific adsorption of electrolyte, reactants, and products is a rather rare occurrence. The limitations of the GCS model, as well as the general lack of... [Pg.573]

The electrical double layer has been studied at the interface of acidified (pH = 3) KCIO4 and K2SO4 solutions in contact with an Sn solid drop electrode with an additionally remelted surface (SnDER).616 The E, is independent of ctl as well as of the electrolyte. Weak specific adsorption of CIO4 at SnDER is probable around <7 = 0. This view is supported by the high value of/pz for SnDER/H20 + KCIO4 (fpz = 1 -27). A value of fpz = 0.99 for SnDER/H20 + K2S04 indicates that the surface of SnDER is geometrically smooth and free from components of pseudo-capacitance.616... [Pg.99]

Anodically polished and then cathodically reduced Cd + Pb alloys have been studied by impedance in aqueous electrolyte solutions (NaF, KF, NaC104, NaN02, NaN03).827 For an alloy with 2% Pb at cNap 0.03 M, Emfo = -0.88 V (SCE) and depends on cNaF, which has been explained by weak specific adsorption of F" anions. Surface activity increases in the sequence F" < CIO4 < N02. The Parsons-Zobel plot at E is linear, with /pz = 1.33 and CT° = 0.31 F m"2. Since the electrical double-layer parameters are closer to those for pc-Pb than for pc-Cd, it has been concluded that Pb is the surface-active component in Cd + Pb alloys827 (Pb has a lower interfacial tension in the liquid state). [Pg.146]

It was concluded from this and related works that suppression of the photodissolution of n-CdX anodes in aqueous systems by ions results primarily from specific adsorption of X at the electrode surface and concomitant shielding of the lattice ions from the solvent molecules, rather than from rapid annihilation of photogenerated holes. The prominent role of adsorbed species could be illustrated, by invoking thermodynamics, in the dramatic shift in CdX dissolution potentials for electrolytes containing sulfide ions. The standard potentials of the relevant reactions for CdS and CdSe, as well as of the sulfide oxidation, are compared as follows (vs. SCE) [68] ... [Pg.223]

Added stability in PEC can be attained through the use of non-aqueous solvents. Noufi et al. [68] systematically evaluated various non-aqueous ferro-ferricyanide electrolytes (DMF, acetonitrile, PC, alcohols) for use in stabilizing n-CdSe photoanodes. Selection of the solvent was discussed in terms of inherent stability provided, the rate of the redox reaction, the tendency toward specific adsorption of the redox species, and the formal potential of the redox couple with respect to the flat band potential (attainable open-circuit voltage). On the basis of these data, the methanol/Fe(CN)6 system (transparent below 2.6 eV) was chosen as providing complete stabilization of CdSe. Results were presented for cells of the type... [Pg.224]

It will be assumed that the interactions between each of metals (1) and (2) and the corresponding surface layers of the electrolyte solution are approximately identical, and also that specific adsorption of ions does not occur in the system being considered. In this case the values of the expressions in the last two sets of brackets in Eq. (9.10) become zero, and from (9.10) and (9.11) an important relation is obtained which links the OCV of galvanic cells with the Volta potential ... [Pg.145]

Two types of EDL are distinguished superficial and interfacial. Superficial EDLs are located wholly within the surface layer of a single phase (e.g., an EDL caused by a nonuniform distribution of electrons in the metal, an EDL caused by orientation of the bipolar solvent molecules in the electrolyte solution, an EDL caused by specific adsorption of ions). Tfie potential drops developing in tfiese cases (the potential inside the phase relative to a point just outside) is called the surface potential of the given phase k. Interfacial EDLs have their two parts in dilferent phases the inner layer with the charge density in the metal (because of an excess or deficit of electrons in the surface layer), and the outer layer of counterions with the charge density = -Qs m in the solution (an excess of cations or anions) the potential drop caused by this double layer is called the interfacial potential... [Pg.148]

Specific adsorption of ions changes the value of E, hence, one distinguishes the notion of a point of zero charge, in solutions of surface-inactive electrolytes, which depends on the metal, from that of a point of zero charge, in solutions of surface-active ions, which in addition depends on the nature and concentration of these ions. The difference between these quantities. [Pg.155]

Double integration with respect to EA yields the surface excess rB+ however, the calculation requires that the value of this excess be known, along with the value of the first differential 3TB+/3EA for a definite potential. This value can be found, for example, by measuring the interfacial tension, especially at the potential of the electrocapillary maximum. The surface excess is often found for solutions of the alkali metals on the basis of the assumption that, at potentials sufficiently more negative than the zero-charge potential, the electrode double layer has a diffuse character without specific adsorption of any component of the electrolyte. The theory of diffuse electrical double layer is then used to determine TB+ and dTB+/3EA (see Section 4.3.1). [Pg.222]

Specific adsorption of ions (probably anions) of the electrolyte phase on the metal also should depend on the metal. Assuming a Langmuir-type equilibrium, one has22 for ions of charge qt and solution concentration c,... [Pg.8]

With this in aind the species which fits the best with the experiaental data for the anoaalous adsorption states would be a fully reversibly discharged species including transfer of one electron. It could be an adsorbed hydrogen-like species under full control of the specific adsorption of anions of the base electrolyte... [Pg.206]

The electrode roughness factor can be determined by using the capacitance measurements and one of the models of the double layer. In the absence of specific adsorption of ions, the inner layer capacitance is independent of the electrolyte concentration, in contrast to the capacitance of the diffuse layer Q, which is concentration dependent. The real surface area can be obtained by measuring the total capacitance C and plotting C against Cj, calculated at pzc from the Gouy-Chapman theory for different electrolyte concentrations. Such plots, called Parsons-Zobel plots, were found to be linear at several charges of the mercury electrode. ... [Pg.11]

To a first approximation, the BLM can be considered to behave like a parallel plate capacitor immersed in a conducting electrolyte solution. In reality, even such a thin insulator as the modified BLM (designated by and R, in Fig. 108) could block the specific adsorption of some species from solution and/or modify the electrochemical behavior of the system. Similarly, System C may turn out to be a semiconductor(l)-insulator-semiconductor(2) (SIS ) rather than a semiconductor(l)-semiconductor(2) (SS ) junction. The obtained data, however, did not allow for an unambiguous distinction between these two alternative junctions we have chosen the simpler of the two [652], The equivalent circuit describing the working (Ew), the reference (Eg), and the counter (Ec) electrodes the resistance (Rm) and the capacitance (C of the BLM the resistance (R ) and capacitance (Ch) of the Helmholtz electrical double layer surrounding the BLM as well as the resistance of the electrolyte solution (RSO ) is shown in Fig. 108a [652],... [Pg.145]

In the absence of specific adsorption of anions, the GCSG model regards the electrical double layer as two plate capacitors in series that correspond respectively, to two regions of the electrolyte adjacent to the electrode, (a) An inner compact layer of solvent molecules (one or two layers) and immobile ions attracted by Coulombic forces (Helmholtz inner plane in Fig. 2). Specific adsorption of anions at the electrode surface may occur in this region by electronic orbital coupling with the metal, (b) An outer diffuse region of coulombically attracted ions in thermal motion that complete the countercharge of the electrode. [Pg.14]

As the electrode surface will, in general, be electrically charged, there will be a surplus of ionic charge with opposite sign in the electrolyte phase in a layer of a certain thickness. The distribution of jons in the electrical double layer so formed is usually described by the Gouy— Chapman—Stern theory [20], which essentially considers the electrostatic interaction between the smeared-out charge on the surface and the positive and negative ions (non-specific adsorption). An extension to this theory is necessary when ions have a more specific interaction with the electrode, i.e. when there is specific adsorption of ions. [Pg.207]

Because so much of the behavior of suspensions is determined or modified by charge associated with the solid phases, ZPC may be inferred from a wide variety of experiments involving pH as a master variable. For example, coagulation and sedimentation rates are maximum at the ZPC, and anion and cation exchange capacities (measured with nonspecific, symmetrical electrolytes) are equal and minimum at the ZPC. More direct and less ambiguous are electrophoresis and streaming potential, in any of their modifications. One can estimate the IEP(s) by measuring adsorption of H+ and OH" if one is certain that no specific adsorption of other species occurs. [Pg.129]


See other pages where Specific adsorption of electrolyte is mentioned: [Pg.147]    [Pg.222]    [Pg.147]    [Pg.222]    [Pg.604]    [Pg.511]    [Pg.41]    [Pg.47]    [Pg.67]    [Pg.73]    [Pg.74]    [Pg.98]    [Pg.104]    [Pg.114]    [Pg.186]    [Pg.365]    [Pg.599]    [Pg.81]    [Pg.42]    [Pg.54]    [Pg.317]    [Pg.270]    [Pg.326]    [Pg.368]    [Pg.503]    [Pg.7]    [Pg.352]    [Pg.227]    [Pg.111]   


SEARCH



Adsorption specific

Adsorption specificity

Electrolytes adsorption

Specificity of Electrolytes

© 2024 chempedia.info