Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Spacer distribution

The membranes are supported and kept apart by feed spacers. A typical cell gap is 0.5-2 mm. The spacer also helps control solution distribution and enhances mass transfer to the membrane. Given that an industrial stack may have up to 500 cell pairs, assuring uniform flow distribution is a major design requirement. [Pg.2031]

C-E Report, 1975, C-E Critical Heat Flux Correlation for C-E Fuel Assemblies with Standard Spacer Grids, Part I, Uniform Axial Power Distribution, CENPD-162, Combustion Engineering Co., Winsor, CT. (5)... [Pg.525]

While the rate of an electron-transfer process and thus the mode of the resulting spin-density distribution can be controlled by the length and the conformation of the spacer groups, the ion pairing creates an additional factor that can serve as some external control even for a given choice of subunits and spacers. [Pg.31]

A remarkable application of phosphines by Grey and coworkers for acid site characterization is the use of diphosphines with alkyl chain spacers of different length between the phosphine moieties. Based on careful NMR analysis and appropriate loading levels with diphosphines, the Al distribution can be determined [223, 224], The idea behind this tool is that the phosphine groups will be proto-nated, when they are close to an acid site in the zeolite structure. Protonation of both phosphine groups in one probe molecule will only occur, when the distance between the two acid sites is compatible with the molecular dimension of the diphosphine. [Pg.212]

The kinetics of iron(III) dissociation from a series of dihydrox-amate siderophores and siderophore mimics, including rhodo-torulic acid (3) and alcalagin, have been investigated (52,127,128, 177,178). ESI-MS studies show that these systems form multiple species as a function of pH and siderophore/iron ratio (128). The lability of these systems and the resultant multiple species leads to several parallel paths to iron(III) dissociation (177). Both the distribution of structures and kinetics of dissociation were shown to be dependent on the length of the spacer chain between the dihydroxamate donor groups (52,127). [Pg.227]

Donor and acceptors can be covalently linked using a chemical spacer. Assume that we have the same D-A pair Eosin-Phenol Red. In this case we will have a mixture of two linked donor-acceptor species (Eosin-Phenol Red protonated and Eosin-Phenol Red unprotonated) characterized by the same distance distribution and different critical distances (ftoi = 28.3 A and Rm = 52.5 A) for FRET. A distribution of D- to -A distances will be present because the linker is typically flexible. The fractional intensity of the first species at time t = 0 is gi and that of the second species is (1 - 1). The fractional intensity at time t = 0 is equal to fractional concentration of each form, which can be in case of pH indicator (Phenol Red) calculated using Eq. (10.31). The donor fluorescence intensity decay of the mixture is described by the equation... [Pg.324]

In the sulfonated poly(arylene) systems described so far, the sulfonic acid groups have been statistically distributed along the polymer main chain. Poly(arylenes) in which the sulfonic acid sites are separated from the main chain by means of a spacer group have also been developed. Examples of systems in which this has been attempted include poly(p-phenylenes) (17),i isr poly(p-phenylene)-poly(aryl ether ketone) copolymers (18), and polyimides (19,20). These are shown in Eigure 3.24. [Pg.148]

Alkylation of 2-naphthoxide ion (Eq. (6)) occurs mainly on carbon in aqueous solvents and mainly on oxygen in aprotic solvents. The product distribution is often used as a probe of the solvent environment in heterogeneous reactions. Brown and Jenkins 54) found that 40-100 % RS spacer chain catalysts 15 and 16 gave up to 98 % O-benzylation of 2-naphthoxide ion with benzyl bromide. The shorter spacer chain catalyst 16 gave 85% O-alkylation, and a conventional benzyltrimethylammonium ion resin 2 gave about 70 % O-alkylation. Because of low activity, product distribution data were obtained with varied amounts of catalyst and were extrapolated to equimolar amounts of catalyst and substrate to obtain the catalyzed O/C product ratios. Interpretation of the data also was complicated by independent evidence that catalysts 15 adsorbed 2-naphthoxide ion, in addition to that bound by ion exchange54). Essentially the same results were obtained with catalysts 24 which lack the ester link in the spacer chain 106). [Pg.74]

A number of flat membranes are stacked with appropriate supporters (spacers) between the membranes, making alternate channels for the feed (retentate) and the permeate. Meshes, corrugated spacers, porous plates, grooved plates, and so on, can be used as supporters. Ihe channels for feed distribution and permeate collection are built into the device. Rectangular or square membrane sheets are common, but some modules use round membrane sheets. [Pg.141]

The distribution of chain sequence extension, calculated by using RIS models, is compared with isotropic-nematic transition characteristics for a number of thermotropic polymers comprising rigid groups connected by polymethylene spacers. The distribution depends strongly not only on the odd-even character of the number of methylene units of the spacers, but also on the specific groups (or atoms connected at the ends of polymethylene spacers. [Pg.314]

Cell construction is mainly confined to two types, using either pocket plate electrodes (vented cells) or sintered , bonded or fibre plate electrodes (vented and sealed cells). In the former, the active materials are retained within pockets of finely perforated nickel-plated sheet steel which are interlocked to form a plate. Positive and negative plates are then interleaved with insulating spacers placed between them. In sintered plate electrodes, a porous sintered nickel mass is formed and the active materials are distributed within the pores. In sintered plate vented cells, cellulose or other membrane materials are used in combination with a woven nylon separator. In sealed or recombining cells, special nylon separators are used which permit rapid oxygen diffusion through the electrolyte layer. [Pg.164]


See other pages where Spacer distribution is mentioned: [Pg.332]    [Pg.332]    [Pg.88]    [Pg.535]    [Pg.581]    [Pg.192]    [Pg.52]    [Pg.17]    [Pg.39]    [Pg.352]    [Pg.423]    [Pg.438]    [Pg.439]    [Pg.233]    [Pg.508]    [Pg.179]    [Pg.111]    [Pg.107]    [Pg.135]    [Pg.136]    [Pg.325]    [Pg.326]    [Pg.77]    [Pg.143]    [Pg.55]    [Pg.223]    [Pg.61]    [Pg.89]    [Pg.90]    [Pg.110]    [Pg.126]    [Pg.63]    [Pg.75]    [Pg.89]    [Pg.512]    [Pg.28]    [Pg.103]    [Pg.329]    [Pg.379]   
See also in sourсe #XX -- [ Pg.87 ]




SEARCH



Particle size distribution spacer particles

Spacer

Spacers

© 2024 chempedia.info