Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sources of Calcium, Magnesium, and Carbon for Modern Oceans

Sources of Calcium, Magnesium, and Carbon for Modern Oceans [Pg.479]

In the previous section the present-day cycle of carbon was discussed in some detail. We can now turn our attention to the sources of carbon to the ocean, and of calcium and magnesium, the major elements (other than oxygen and hydrogen) with which carbon interacts. Because carbon dioxide is the major acid gas involved in both carbonate and silicate mineral weathering reactions at the Earth s surface, it is informative to consider the sources of other elements as well. [Pg.479]

To evaluate the net riverine influx of dissolved species to the ocean, the river load has to be corrected for sea salts transported via the atmosphere from the ocean to the continents and rained out mainly in coastal precipitation. Table 9.7 shows the average concentration of selected dissolved and particulate elements in rivers from Martin and Meybeck (1979), and the corresponding net fluxes corrected for sea-salt cycling from Martin and Meybeck (1979). The corrections of fluxes for cyclic salts and pollution are still debatable estimates (e.g., Holland, 1978 Maynard, 1981), and affect mainly the evaluation of the net flux of Na+ by perhaps as much as 20%. [Pg.481]

It can be seen in Table 9.7 that the particulate load constitutes by far the most important contribution (88%) of total river discharge of materials to the ocean. The amount carried as solids should be increased by bed load transport, which usually is considered to be about 10% of the total suspended load (Blatt et al 1980). The mean chemical composition of river suspended matter closely approximates that of average shale (Table 9.8). This resemblance is expected because suspended solids in rivers are derived mainly from shales. Sedimentary rocks constitute about 66% of the rocks exposed at the Earth s surface fine-grained rocks, like shales, comprise at least 65% of the sedimentary rock mass. Thus, roughly 50% of surface erosion products come from shaly rocks. [Pg.481]

The mineralogy of the suspended matter carried by rivers is not well documented. There are numerous analyses either of the clay fraction or of sands carried by rivers, but only a few total quantitative analyses are reported in the literature. As examples, the average mineralogical composition of two large river systems, the Amazon and the Mississippi, are presented in Table 9.9. This table also includes the mean mineralogical composition of shales for comparison with river suspended sediments. The overall average of 300 samples of shales analyzed by Shaw and Weaver (1965) is 30.8% quartz, 4.5% feldspar, 60.9% clay minerals, and [Pg.482]




SEARCH



Calcium carbonate

Calcium carbonate sources

Calcium magnesium

Calcium magnesium and

Calcium source

Carbon oceanic

Carbon source

Carbonates and oceans

Magnesium and

Magnesium carbonate

Magnesium source

Oceanic source

Oceans calcium

Oceans carbon

Oceans magnesium

Of magnesium

Sources of Calcium

Sources of carbon

© 2024 chempedia.info