Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solvent effects with added water

Then, ethyl methyl(3-benzoylphenyl)cyanoacetate employed as an intermediate material is prepared as follows The sodium derivative of ethyl (3-benzoylphenyl)cyanoacetate (131 g) is dissolved in anhydrous ethanol (2 liters). Methyl iodide (236 g) is added and the mixture is heated under reflux for 22 hours, and then concentrated to dryness under reduced pressure (10 mm Hg). The residue is taken up in methylene chloride (900 cc) and water (500 cc) and acidified with 4N hydrochloric acid (10 cc). The methylene chloride solution is decanted, washed with water (400 cc) and dried over anhydrous sodium sulfate. The methylene chloride solution is filtered through a column containing alumina (1,500 g). Elution is effected with methylene chloride (6 liters), and the solvent is evaporated under reduced pressure (10 mm Hg) to give ethyl methyl(3-benzoylphenyl)cyano-acetate (48 g) in the form of an oil. [Pg.864]

With 77 % aqueous acetic acid, the rates were found to be more affected by added perchloric acid than by sodium perchlorate (but only at higher concentrations than those used by Stanley and Shorter207, which accounts for the failure of these workers to observe acid catalysis, but their observation of kinetic orders in hypochlorous acid of less than one remains unaccounted for). The difference in the effect of the added electrolyte increased with concentration, and the rates of the acid-catalysed reaction reached a maximum in ca. 50 % aqueous acetic acid, passed through a minimum at ca. 90 % aqueous acetic acid and rose very rapidly thereafter. The faster chlorination in 50% acid than in water was, therefore, considered consistent with chlorination by AcOHCl+, which is subject to an increasing solvent effect in the direction of less aqueous media (hence the minimum in 90 % acid), and a third factor operates, viz. that in pure acetic acid the bulk source of chlorine ischlorineacetate rather than HOC1 and causes the rapid rise in rate towards the anhydrous medium. The relative rates of the acid-catalysed (acidity > 0.49 M) chlorination of some aromatics in 76 % aqueous acetic acid at 25 °C were found to be toluene, 69 benzene, 1 chlorobenzene, 0.097 benzoic acid, 0.004. Some of these kinetic observations were confirmed in a study of the chlorination of diphenylmethane in the presence of 0.030 M perchloric acid, second-order rate coefficients were obtained at 25 °C as follows209 0.161 (98 vol. % aqueous acetic acid) ca. 0.078 (75 vol. % acid), and, in the latter solvent in the presence of 0.50 M perchloric acid, diphenylmethane was approximately 30 times more reactive than benzene. [Pg.91]

In the following text, examples of solvent effects on enzyme selectivity, referred either to systems based (i) on water-miscible organic cosolvents added to aqueous buffers or (ii) on organic media with low water activity, are discussed. [Pg.5]

Other companies (e.g., Hoechst) have developed a slightly different process in which the water content is low in order to save CO feedstock. In the absence of water it turned out that the catalyst precipitates. Clearly, at low water concentrations the reduction of rhodium(III) back to rhodium(I) is much slower, but the formation of the trivalent rhodium species is reduced in the first place, because the HI content decreases with the water concentration. The water content is kept low by adding part of the methanol in the form of methyl acetate. Indeed, the shift reaction is now suppressed. Stabilization of the rhodium species and lowering of the HI content can be achieved by the addition of iodide salts. High reaction rates and low catalyst usage can be achieved at low reactor water concentration by the introduction of tertiary phosphine oxide additives.8 The kinetics of the title reaction with respect to [MeOH] change if H20 is used as a solvent instead of AcOH.9 Kinetic data for the Rh-catalyzed carbonylation of methanol have been critically analyzed. The discrepancy between the reaction rate constants is due to ignoring the effect of vapor-liquid equilibrium of the iodide promoter.10... [Pg.144]

Determination of the Effect of Water on Poljnnerization. To a solution of 4.76 mmole of HFB and 4.76 mmole of Bis-A in 20 ml of the appropriate solvent of known water content was added 20.6 mmole of K2CO3 and 1.32 mmole of 18-crown-6 ether. The crown ether, when necessary was dried by complexation with acetonitrile. Water content of solvent and catalyst was determined in all runs by Karl Fischer titration. Known microliter quantites of water in increments of lOyl were then added to the reaction mixture. The magnetically stirred, heterogeneous mixture was heated in an oil bath and maintained under N2. Upon cooling to room temperature, the reaction mixture was slowly poured into ca. 300 ml of a nonsolvent vigorously stirred in a blender. The filtered solids were washed three times with 300-ml portions of distilled water. [Pg.140]

This crude analysis is based on the behavior postulated by the Born equation. However, ion-pair formation equilibrium constants have been observed to deviate ma edly from that behavior (22/ -222)1 Oakenful, and Fenwick (222) found a maximum in the ion-pair formation constants of several alkylamines with carboxylic acids when determined at various methanol-water solvent compositions as shown by their data in Fig. 54. The results demonstrate that in this system the stability constant decreases with increasing organic solvent concentration above a.critical value which yields maximum stability. The authors suggested that this was due to a weakening of hydrophobic interactions between the ion-pair forming species by increased alcohol concentrations. In practice the effect of added organic solvent has been either to decrease the retention factor or to have virtually no effect. [Pg.303]

Solvent Effects. The conversion of dihydroanthracene could be increased by adding water to the pyridine solvent (Table III). An 86% conversion to anthraquinone was obtained when 95% aqueous pyridine was used as the solvent. Furthermore, methanol could be substituted for the water with equivalent results. Other solvents were tried in place of pyridine (Table IV). The data indicate that 95% aqueous pyridine gave the best yields, although aniline gave nearly similar results. When acetonitrile and dimethylformamide were used, the large amounts of unreacted starting material indicate that these solvents may have deactivated the base by undergoing a hydrolysis reaction. [Pg.217]

Although supercritical CO2 is an effective solvent for oils, fats, and similar substances, it is a poor one for nonvolatile hydrophilic (water-loving) substances such as proteins or metallic salts. Adding water as such to the supercritical CO2 is of little help, as the solubility of water in it is limited. Johnson and co-workers216 overcame the latter limitation by forming water-in-C02 emulsions with the aid of an added nontoxic perfluoropolyether surfactant that forms reverse micelles around the water microdroplets, in effect combining the special properties of supercritical CO2 with the solvent power of water. These emulsions can dissolve a variety of biomolecules at near-ambient temperatures, without loss of their biological activity. [Pg.158]

Miwa and Yamamoto (31) described a simple and rapid method with high accuracy and reliability for the determination of C8 0-C22 6 fatty acids, which occur in esterified forms in dietary fats and oils and in living cells [the biological effects of routinely consumed fats and oils are of wide interest because of their impact on human health and nutrition (28,29), in particular, the ratio of cu-3 polyunsaturated fatty acid to w-6 polyunsaturated fatty acids (w-3/cu-6) seems to be associated with atherosclerosis and breast and colon cancers (30)]. They report improved separation of 29 saturated and mono- and polyunsaturated fatty acids (C8-C22), including cis-trans isomers and double-bond positional isomers, as hydrazides formed by direct derivatization with 2-nitrophenylhydrazine hydrochloride (2-NPH HC1) of saponified samples without extraction. The column consisted of a J sphere ODS-M 80 column (particle size 4 /xm, 250 X 4.6-mm ID), packed closely with spherical silica encapsulated to reach a carbon content of about 14% with end-capped octadecyl-bonded-spherical silica (ODS), maintained at 50°C. The solvent system was acetonitrile-water (86 14, v/v) maintained at pH 4-5 by adding 0.1 M hydrochloric acid with a flow rate of 2.0 ml/min. Separation was performed within only 22 min by a simple isocratic elution (Fig. 6). The resolution of double-bond positional isomers, such as y-linolenic ( >-6) and a-linolenic acid ( >-3) hydrazides and w-9, >-12, and >-15 eicosenoic acid hydrazides was achieved by use of this column. [Pg.181]


See other pages where Solvent effects with added water is mentioned: [Pg.399]    [Pg.399]    [Pg.168]    [Pg.157]    [Pg.7]    [Pg.595]    [Pg.85]    [Pg.325]    [Pg.20]    [Pg.352]    [Pg.161]    [Pg.258]    [Pg.113]    [Pg.18]    [Pg.492]    [Pg.571]    [Pg.704]    [Pg.155]    [Pg.18]    [Pg.198]    [Pg.328]    [Pg.11]    [Pg.697]    [Pg.211]    [Pg.863]    [Pg.62]    [Pg.90]    [Pg.129]    [Pg.270]    [Pg.63]    [Pg.176]    [Pg.397]    [Pg.916]    [Pg.41]    [Pg.224]    [Pg.333]    [Pg.198]    [Pg.28]    [Pg.138]    [Pg.1135]    [Pg.332]   
See also in sourсe #XX -- [ Pg.157 ]




SEARCH



Added solvent

Added water

Solvent, water

Solvents adding

© 2024 chempedia.info