Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solution viscosity, effect

Miao, W., Ding, Z., Bard, A. J. Solution viscosity effects on the heterogeneous electron transfer kinetics of ferrocenemethanol in dimethyl sulfoxide-water mixtures. J. Phys. Chem. B 2002, 106, 1392-1398. [Pg.153]

Viscosity additives are aliphatic polymers of high molecular weight whose main chain is flexible. It is known that in a poor solvent, interactions between the elements making up the polymer chain are stronger than interactions between the solvent and the chain (Quivoron, 1978), to the point that the polymer chain adopts a ball of yarn configuration. The macromolecules in this configuration occupy a small volume. The viscosity of a solution being related to the volume occupied by the solute, the effect of polymers on the viscosity in a poor solvent will be small. [Pg.355]

The drop in pressure when a stream of gas or liquid flows over a surface can be estimated from the given approximate formula if viscosity effects are ignored. The example calculation reveals that, with the sorts of gas flows common in a concentric-tube nebulizer, the liquid (the sample solution) at the end of the innermost tube is subjected to a partial vacuum of about 0.3 atm. This vacuum causes the liquid to lift out of the capillary, where it meets the flowing gas stream and is broken into an aerosol. For cross-flow nebulizers, the vacuum created depends critically on the alignment of the gas and liquid flows but, as a maximum, it can be estimated from the given formula. [Pg.141]

The segmental friction factor introduced in the derivation of the Debye viscosity equation is an important quantity. It will continue to play a role in the discussion of entanglement effects in the theory of viscoelasticity in the next chapter, and again in Chap. 9 in connection with solution viscosity. Now that we have an idea of the magnitude of this parameter, let us examine the range of values it takes on. [Pg.113]

The viscosity of sodium algiaate solutioas is slightly depressed by the additioa of moaovaleat salts. As is frequeatly the case with polyelectrolytes, the polymer ia solutioa coatracts as the ionic strength of the solution is increased. The maximum viscosity effect is obtained at about 0.1 N salt concentration. [Pg.432]

Concentration and Molecular Weight Effects. The viscosity of aqueous solutions of poly(ethylene oxide) depends on the concentration of the polymer solute, the molecular weight, the solution temperature, concentration of dissolved inorganic salts, and the shear rate. Viscosity increases with concentration and this dependence becomes more pronounced with increasing molecular weight. This combined effect is shown in Figure 3, in which solution viscosity is presented as a function of concentration for various molecular weight polymers. [Pg.338]

The viscosity of the aqueous solution is also significantly affected by temperature. In polymers of molecular weights (1-50) x 10 , the solution viscosity may decrease by one order of magnitude as the temperature of measurement is increased from 10 to 90°C. Figure 5 shows this effect. [Pg.339]

Fig. 8. Effect of shear on aqueous solution viscosities of poly (ethylene oxide) resins (a) 1.0 wt % solution, (b) 5.0 wt % solution (10). Each curve... Fig. 8. Effect of shear on aqueous solution viscosities of poly (ethylene oxide) resins (a) 1.0 wt % solution, (b) 5.0 wt % solution (10). Each curve...
Micellar properties are affected by changes in the environment, eg, temperature, solvents, electrolytes, and solubilized components. These changes include compHcated phase changes, viscosity effects, gel formation, and Hquefication of Hquid crystals. Of the simpler changes, high concentrations of water-soluble alcohols in aqueous solution often dissolve micelles and in nonaqueous solvents addition of water frequendy causes a sharp increase in micellar size. [Pg.237]

HPC is compatible with many natural and synthetic water-soluble polymers and gums (50). Generally, blends of HPC with another nonionic polymer such as HEC yield water solutions having viscosities in agreement with the calculated value. Blends of HPC and anionic CMC, however, produce solution viscosities greater than calculated. This synergistic effect may be reduced in the presence of dissolved salts or if the pH is below 3 or above 10. [Pg.279]

Sample loading must be reduced in accordance with the column inside diameter. Polymers exhibit high solution viscosity, and in order to avoid band broadening due to viscous streaming the sample concentration must be reduced for narrow-bore columns. Overloading effects become noticeable at much lower concentrations using 4.6-mm columns compared to 7.5-mm columns because of the effective sample concentration in a smaller volume column. [Pg.365]

The effect of MW and MWD on the solid state properties have been extensively studied [11,12,82]. These studies have been made both on fractionated and whole polymer samples. Attempts have also been made to correlate the solution viscosity, melt viscosity, MFI and other related parameters, which represent the MW and MWD of the polymers, with the solid state properties. Table 6 summarizes the results of various studies on effect of MW and MWD on the properties of PEs. [Pg.288]

Temperature effects indicate an activation energy of 113 kJ/mol for Stage I and 16 kJ/mol for Stage II in 7079-T651 alloy. Crack velocity in Stage II is lowered as the solution viscosity is increased. [Pg.1275]

Figure 1 Is a flow sheet showing some significant aspects of the Iterative analysis. The first step In the program Is to Input data for about 50 physical, chemical and kinetic properties of the reactants. Each loop of this analysis Is conducted at a specified solution temperature T K. Some of the variables computed In each loop are the monomer conversion, polymer concentration, monomer and polymer volume fractions, effective polymer molecular weight, cumulative number average molecular weight, cumulative weight average molecular weight, solution viscosity, polymerization rate, ratio of polymerization rates between the current and previous steps, the total pressure and the partial pressures of the monomer, the solvent, and the nitrogen. Figure 1 Is a flow sheet showing some significant aspects of the Iterative analysis. The first step In the program Is to Input data for about 50 physical, chemical and kinetic properties of the reactants. Each loop of this analysis Is conducted at a specified solution temperature T K. Some of the variables computed In each loop are the monomer conversion, polymer concentration, monomer and polymer volume fractions, effective polymer molecular weight, cumulative number average molecular weight, cumulative weight average molecular weight, solution viscosity, polymerization rate, ratio of polymerization rates between the current and previous steps, the total pressure and the partial pressures of the monomer, the solvent, and the nitrogen.
Autoacceleration, Glass and Zutty (S) and Burnett and Melville 9) reported an increase in the rate and average degree of polymerization with increasing solution viscosity, heterogeneous conditions and chain coiling for free radical, vinyl polymerizations. Autoacceleration is also called Trommsdorff. (10) effect. [Pg.376]

A kinetic study for the polymerization of styrene, initiated with n BuLi, was designed to explore the Trommsdorff effect on rate constants of initiation and propagation and polystyryl anion association. Initiator association, initiation rate and propagation rates are essentially independent of solution viscosity, Polystyryl anion association is dependent on media viscosity. Temperature dependency correlates as an Arrhenius relationship. Observations were restricted to viscosities less than 200 centipoise. Population density distribution analysis indicates that rate constants are also independent of degree of polymerization, which is consistent with Flory s principle of equal reactivity. [Pg.392]

The exceptionally strong influence of calcium-ions on pectin solutions especially made with HM citrus pectins can be shown by a frequency sweep. The addition of calcium leads to an increase of the complex viscosity. Additionally we can observe a stable trapping of air bubbles in the solution. This effect can not be caused by the increase of viscosity. The frequency sweeps of the solutions give the answer. The storage modulus curves show the significant increase of the elastic shares caused by the addition of calcium-ions. [Pg.419]

At pH 3.0, all enzymatic activities are lower than the ones at pH 6.0. This effect is especially marked for the PL because its optimum pH value is definitely higher than those of PG and PE (Table 1). PG is very efficient in depolymerising the polygalacturonic acid. The solution viscosity reaches its minimum value, which corresponds to a rather low molar mass, after 40 min at both pH 4.1 and 6.0. [Pg.975]

Several assumptions were made in using the broad MWD standard approach for calibration. With some justification a two parameter equation was used for calibration however the method did not correct or necessarily account for peak speading and viscosity effects. Also, a uniform chain structure was assumed whereas in reality the polymer may be a mixture of branched and linear chains. To accurately evaluate the MWD the polymer chain structure should be defined and hydrolysis effects must be totally eliminated. Work is currently underway in our laboratory to fractionate a low conversion polydlchlorophosphazene to obtain linear polymer standards. The standards will be used in polymer solution and structure studies and for SEC calibration. Finally, the universal calibration theory will be tested and then applied to estimate the extent of branching in other polydlchlorophosphazenes. [Pg.252]

The validity of the above conclusions rests on the reliability of theoretical predictions on excited state barriers as low as 1-2 kcal mol . Of course, this required as accurate an experimental check as possible with reference to both the solvent viscosity effects, completely disregarded by theory, and the dielectric solvent effects. As for the photoisomerization dynamics, the needed information was derived from measurements of fluorescence lifetimes (x) and quantum yields (dielectric constant, where extensive formation of ion pairs may occur [60], the observed photophysical properties are confidently referable to the unperturbed BMPC cation. Figure 6 shows the temperature dependence of the... [Pg.391]


See other pages where Solution viscosity, effect is mentioned: [Pg.338]    [Pg.51]    [Pg.488]    [Pg.217]    [Pg.338]    [Pg.51]    [Pg.488]    [Pg.217]    [Pg.2603]    [Pg.276]    [Pg.207]    [Pg.302]    [Pg.15]    [Pg.192]    [Pg.192]    [Pg.485]    [Pg.273]    [Pg.276]    [Pg.587]    [Pg.114]    [Pg.438]    [Pg.125]    [Pg.54]    [Pg.183]    [Pg.308]    [Pg.394]    [Pg.599]    [Pg.73]    [Pg.223]    [Pg.187]    [Pg.192]    [Pg.125]    [Pg.397]   
See also in sourсe #XX -- [ Pg.330 ]




SEARCH



Viscosity effect

© 2024 chempedia.info