Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solute concentration limited

Currently proposed licensing regulations for geologic nuclear waste repositories require a performance assessment involving long-term predictive capabilities. Previous work (J- 5) has shown the importance of solubility controls for modeling maximum actinide concentrations in repository groundwaters. However, until reliable data are available on the actinide solid phases that may be present or that may precipitate in the environment, the solubility of solid phases such as hydrous oxides that have fast precipitation kinetics can be used to initially set maximum solution concentration limits. [Pg.135]

Scale of Operation Coulometric methods of analysis can be used to analyze small absolute amounts of analyte. In controlled-current coulometry, for example, the moles of analyte consumed during an exhaustive electrolysis is given by equation 11.32. An electrolysis carried out with a constant current of 100 pA for 100 s, therefore, consumes only 1 X 10 mol of analyte if = 1. For an analyte with a molecular weight of 100 g/mol, 1 X 10 mol corresponds to only 10 pg. The concentration of analyte in the electrochemical cell, however, must be sufficient to allow an accurate determination of the end point. When using visual end points, coulometric titrations require solution concentrations greater than 10 M and, as with conventional titrations, are limited to major and minor analytes. A coulometric titration to a preset potentiometric end point is feasible even with solution concentrations of 10 M, making possible the analysis of trace analytes. [Pg.507]

The final part of a gas chromatograph is the detector. The ideal detector has several desirable features, including low detection limits, a linear response over a wide range of solute concentrations (which makes quantitative work easier), responsiveness to all solutes or selectivity for a specific class of solutes, and an insensitivity to changes in flow rate or temperature. [Pg.569]

Idea.1 Liquid Solutions. Two limiting laws of solution thermodynamics that are widely employed are Henry s law and Raoult s law, which represent vapor—Hquid partitioning behavior in the concentration extremes. These laws are used frequently in equiUbrium problems and apply to a variety of real systems (10). [Pg.235]

FIG. 14-11 Gas-ph ase and liquid-phase solute-concentration profiles for an extremely slow (IdneticaUy limited) reaction system for which is less than 0.3. [Pg.1364]

FIG. 14-13 Gas-phase and liquid-phase solute-concentration profiles for a liquid-phase mass-transfer limited reaction system in which is larger than 3. [Pg.1367]

The potentiometry sensor (ion-selective electrode) controls application for determination of polymeric surface-active substances now gets the increasing value. Potentiometry sensor controls are actively used due to simple instmment registration, a wide range of determined concentrations, and opportunity of continuous substances contents definition. That less, the ionometry application for the cation polymeric SAS analysis in a solution is limited by complexity of polycation charge determination and ion-exchanger synthesis. [Pg.108]

Concentration limits of the diphosphate-ion, admissible to determination of magnesium and cobalt, manganese and cobalt, zinc and cobalt by spectrophotometric method with application of the l-(2-pyridylazo)-resorcinol (PAR) are presented. Exceeding maintenance of the diphosphate-ion higher admissible supposes a preliminary its separation on the anionite in the H+-form. The optimum conditions of cobalt determination and amount of the PAR, necessary for its full fastening are established on foundation of dependence of optical density of the cobalt complex with PAR from concentration Co + and pH (buffer solutions citrate-ammoniac and acetate-ammoniac). [Pg.182]

Thus excess of Mn(IV) hydroxide represents itself as a collector of thallium which practically completely passes into a deposit, and interfering metal ions (Cu, Cd, Pb, Ni, etc.) remain in a solution and are separated providing high selectivity of thallium determination. Effect of some factors on the value of analytical signal of thallium has been investigated at the stages of water pretreatment. Based on of these data the unified technique for thallium determination has been developed and tested on natural waters. The method proposed allows to determine content of thallium in waters which is 10 times lower than it is required by maximum allowable concentration limits. [Pg.209]

Both kinetic and equilibrium experimental methods are used to characterize and compare adsorption of aqueous pollutants in active carbons. In the simplest kinetic method, the uptake of a pollutant from a static, isothermal solution is measured as a function of time. This approach may also yield equilibrium adsorption data, i.e., amounts adsorbed for different solution concentrations in the limit t —> qo. A more practical kinetic method is a continuous flow reactor, as illustrated in Fig. 5. [Pg.107]

A major disadvantage of this system is the limitation of the single-pass gas-chlorination phase. Unless increased pressure is used, this equipment is unable to achieve higher concentrations of chlorine as an aid to a more complete and controllable reaction with the chlorite ion. The French have developed a variation of this process using a multiple-pass enrichment loop on the chlorinator to achieve a much higher concentration of chlorine and thereby quickly attain the optimum pH for maximum conversion to chlorine dioxide. By using a multiple-pass recirculation system, the chlorine solution concentrates to a level of 5-6 g/1. At this concentration, the pH of the solution reduces to 3.0 and thereby provides the low pH level necessary for efficient chlorine dioxide production. A single pass results in a chlorine concentration in water of about 1 g/1, which produces a pH of 4 to 5. If sodium chlorite solution is added at this pH, only about 60 percent yield of chlorine dioxide is achieved. The remainder is unreacted chlorine (in solution) and... [Pg.474]

The solution concentration for a potassium carbonate system is limited by the solubility of the potassium bicarbonate (KHCO3) in the rich... [Pg.167]

Here Q is the solute concentration and R the gas constant. This is in fact obeyed over a rather wide range of concentrations, almost up to solute mole fractions of 0.61, with an error of only 25 percent. This is remarkable, since the van t Hoff equation is rigorous only in the infinitely dilute limit. Even in the case of highly nonideal solutions, for example a solution with a ratios of 1.5 and e ratios of 4, the van t Hoff equation is still obeyed quite well for concentrations up to about 6 mole percent. It appears from these results that the van t Hoff approximation is much more sensitive to the nonideality of the solutions, and not that sensitive... [Pg.781]

By eliminating the concentrations in turn from eqns.(2), (6) and (8), we obtain a quartic equation which is most simply obtained numerically. However, we can obtain good approximate solutions in limiting cases. Firstly, we can set the Caa and Cbb equal to unity to a... [Pg.342]

Nylon 66 is produced by the reaction of hexamethylenediamine and adipic acid (see Chapters 9 and 10 for the production of the two monomers). This produces hexamethylenediammonium adipate salt. The product is a dilute salt solution concentrated to approximately 60% and charged with acetic acid to a reactor where water is continuously removed. The presence of a small amount of acetic acid limits the degree of polymerization to the desired level ... [Pg.364]

The relationships among colligative properties and solute concentration are best regarded as limiting laws. They are approached more closely as the solution becomes more dilute. In practice, the relationships discussed in this section are valid, for nonelectrolytes, to within a few percent at concentrations as high as 1 Af. At higher concentrations, solute-solute interactions lead to larger deviations. [Pg.267]

Usually, dilute polymer solutions are isotropic systems, i.e. macromolecular chains can exist in these solutions independently of each other with a random distribution of orientations of the long axes of coils. The solutions of flexible-chain polymers remain isotropic when the solution concentration increases whereas in concentrated solutions of macromolecules of limited flexibility the chains can no longer be oriented arbitrarily and some direction of preferential orientations of macromolecular axes appears, i.e. the mutual orientations of the axes of neighboring molecules are correlated. This means that... [Pg.208]

Depending on the type and charge of electrolyte, its concentration, and the temperature, a limit of solubility exists for every surfactant in an electrolyte-containing solution. This limit of solubility often lies at higher concentrations for phosphorus-containing surfactants than for most other ones. [Pg.591]

A hypothetical solution that obeys Raoult s law exactly at all concentrations is called an ideal solution. In an ideal solution, the interactions between solute and solvent molecules are the same as the interactions between solvent molecules in the pure state and between solute molecules in the pure state. Consequently, the solute molecules mingle freely with the solvent molecules. That is, in an ideal solution, the enthalpy of solution is zero. Solutes that form nearly ideal solutions are often similar in composition and structure to the solvent molecules. For instance, methylbenzene (toluene), C6H5CH, forms nearly ideal solutions with benzene, C6H6. Real solutions do not obey Raoult s law at all concentrations but the lower the solute concentration, the more closely they resemble ideal solutions. Raoult s law is another example of a limiting law (Section 4.4), which in this case becomes increasingly valid as the concentration of the solute approaches zero. A solution that does not obey Raoult s law at a particular solute concentration is called a nonideal solution. Real solutions are approximately ideal at solute concentrations below about 0.1 M for nonelectrolyte solutions and 0.01 M for electrolyte solutions. The greater departure from ideality in electrolyte solutions arises from the interactions between ions, which occur over a long distance and hence have a pronounced effect. Unless stated otherwise, we shall assume that all the solutions that we meet are ideal. [Pg.452]

Fig. 3. Steady state concentration profiles of catalyst and substrate species in the film and diffusion layer for for various cases of redox catalysis at polymer-modified electrodes. Explanation of layers see bottom case (S + E) f film d diffusion layer b bulk solution i, limiting current at the rotating disk electrode other symbols have the same meaning as in Fig. 2 (from ref. Fig. 3. Steady state concentration profiles of catalyst and substrate species in the film and diffusion layer for for various cases of redox catalysis at polymer-modified electrodes. Explanation of layers see bottom case (S + E) f film d diffusion layer b bulk solution i, limiting current at the rotating disk electrode other symbols have the same meaning as in Fig. 2 (from ref.
The class I FruA isolated from rabbit muscle aldolase (RAMA) is the aldolase employed for preparative synthesis in the widest sense, owing to its commercial availability and useful specific activity of 20 U mg . Its operative stability in solution is limiting, but the more robust homologous enzyme from Staphylococcus carnosus has been cloned for overexpression [87], which offers unusual stability for synthetic purposes. Recently, it was shown that less polar substrates may be converted as highly concentrated water-in-oil emulsions [88]. [Pg.285]


See other pages where Solute concentration limited is mentioned: [Pg.362]    [Pg.199]    [Pg.300]    [Pg.376]    [Pg.301]    [Pg.362]    [Pg.199]    [Pg.300]    [Pg.376]    [Pg.301]    [Pg.2947]    [Pg.168]    [Pg.311]    [Pg.476]    [Pg.158]    [Pg.171]    [Pg.341]    [Pg.1464]    [Pg.1465]    [Pg.1535]    [Pg.193]    [Pg.232]    [Pg.135]    [Pg.298]    [Pg.409]    [Pg.1179]    [Pg.285]    [Pg.848]    [Pg.143]    [Pg.234]    [Pg.113]    [Pg.278]    [Pg.216]    [Pg.253]   
See also in sourсe #XX -- [ Pg.25 ]




SEARCH



Concentrated solutions

Concentrating solutions

Limiting concentration

Nickel solution concentration limits, standard

Solute concentration

Solutions solution concentrations

© 2024 chempedia.info