Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solid-state reactions powders

Johnson and Gallagher [410] showed that, in finely divided powder mixtures, Li2C03 and Fe203 react significantly below the usual temperature of carbonate dissociation, so that C02 evolution can be used in kinetic studies of the solid state reaction... [Pg.273]

The defects of the matrix play an important role on luminescent performances in these materials. Taking into consideration the preparation process of these compounds with the solid-state reaction of mixtures of BaC03, H3BO3, and NH4H2PO4 at different molar ratio, non-equal evaporation during the sintering process of these powders is inevitable and thus results in the formation of intrinsic defects, such as cation and oxygen vacancies. Positional disorder of B and Vacant B (Vb)" have been reported in SrBPOs crystals on the basis of... [Pg.309]

As an example, consider the following. Suppose we have a crucible half-filled with a powder. We now fill the crucible with another powder of different composition and then heat the filled crucible. Any solid state reaction which does occur can only do so at the boundary of the two layers of powders. If the reaction is A -t- B = AB, then we find that the reaction product, which is also a solid, forms as a phase boundary between the two layers. The same condition exists in a solid state reaction between two crystalline particles having differing compositions. That is, they can only react at the interface of each particle. This is illustrated in the following diagram, which is a model of how the components react through a phase boundary ... [Pg.133]

Thermal solid-state reactions were carried out by keeping a mixture of powdered reactant and reagent at room temperature or elevated temperature, or by mixing with pestle and mortar. In some cases, the solid-state reactions proceed much more efficiently in a water suspension medium or in the presence of a small amount of solvent. Sometimes, a mixture of solid reactant and reagent turns to liquid as the reaction proceeds. All these reactions are called solid-state reactions in this chapter. Solid-state reactions were found to be useful in the study of reaction mechanisms, since it is easy to monitor the reaction by continuous measurement of IR spectra. [Pg.2]

Solid state reactions are also very common in producing oxide materials and are based on thermal treatment of solid oxides, hydroxides and metal salts (carbonates, oxalates, nitrates, sulphates, acetates, etc.) which decompose and react forming target products and evolving gaseous products. Solid-state chemistry states that, like in the case of precipitation, powder characteristics depend on the speed of the nucleation of particles and their growth however, these processes in solids are much slower than in liquids. [Pg.501]

Cr-ZSM-5 catalysts prepared by solid-state reaction from different chromium precursors (acetate, chloride, nitrate, sulphate and ammonium dichromate) were studied in the selective ammoxidation of ethylene to acetonitrile. Cr-ZSM-5 catalysts were characterized by chemical analysis, X-ray powder diffraction, FTIR (1500-400 cm 1), N2 physisorption (BET), 27A1 MAS NMR, UV-Visible spectroscopy, NH3-TPD and H2-TPR. For all samples, UV-Visible spectroscopy and H2-TPR results confirmed that both Cr(VI) ions and Cr(III) oxide coexist. TPD of ammonia showed that from the chromium incorporation, it results strong Lewis acid sites formation at the detriment of the initial Bronsted acid sites. The catalyst issued from chromium chloride showed higher activity and selectivity toward acetonitrile. This activity can be assigned to the nature of chromium species formed using this precursor. In general, C r6+ species seem to play a key role in the ammoxidation reaction but Cr203 oxide enhances the deep oxidation. [Pg.345]

This first industrial device has been designed by MES company [65] for drying. It could be used for solid state reactions with powder reactants. Consequently, the reactor cannot be a classical chemical vessel or a classical chemical reactor with stirrer and others associated technical devices but a container able to enclose a reactant powder layer. The geometrical shape of the microwave applicator is parallelepiped box and the reactants are supported by a dielectric conveyor belt with edges as described by the Fig. 1.18. [Pg.30]

X-ray powder diffractometry can be used to study solid state reactions, provided the powder pattern of the reactant is different from that of the reaction product. The anhydrous and hydrated states of many pharmaceutical compounds exhibit pronounced differences in their powder x-ray diffraction patterns. Such differences were demonstrated earlier in the case of fluprednisolone and carbamazepine. Based on such differences, the dehydration kinetics of theophylline monohydrate (CvHgN H20) and ampicillin trihydrate (Ci6H19N304S 3H2O) were studied [66]. On heating, theophylline monohydrate dehydrated to a crystalline anhydrous phase, while the ampicillin trihydrate formed an amorphous anhydrate. In case of theophylline, simultaneous quantification of both the monohydrate and the anhydrate was possible. It was concluded that the initial rate of this reaction was zero order. By carrying out the reaction at several... [Pg.216]

An old, simple and still widely used method to perform a solid-state reaction is to mix together the powdered reactants, possibly press them into a pellet and then, generally under a controlled atmosphere, heat it in a furnace for prolonged periods. In a number of cases, especially if fine, well mixed, and compacted component powders are used, this treatment will be sufficient to obtain a complete reaction. In other cases more complex treatments will be necessary (for instance to pulverize the partially reacted pellet and to mix, compact and heat it again). [Pg.566]

All of these syntheses are preceded by mechanical activation of reagents in ball mills and aU of them can be considered when mannfacturing of nanohydride powders is anticipated. However, solid-state reaction rontes are not always well investigated, and can be complex. More often than not, the yields of reactions leading to nanohydrides are not reaching 100% and an amorphons phase, which provides lower storage capacity, is formed. [Pg.56]

Spectroscopic analyses of solid-state reactions must first use solid-state techniques (IR, UV/Vis, Raman, luminescence, NMR, ESR, CD, X-ray powder diffraction, DSC, etc.) in order to secure the solid-state conversion, before the solution techniques (detection of minor side products, specific rotation, etc.) are applied. [Pg.101]

Many crystalline solids can undergo chemical transformations induced, for example, by incident radiation or by heat. An important aspect of such solid-state reactions is to understand the structural properties of the product phase obtained directly from the reaction, and in particular to rationalize the relationships between the structural properties of the product and reactant phases. In many cases, however, the product phase is amorphous, but for cases in which the product phase is crystalline, it is usually obtained as a microcrystalline powder that does not contain single crystals of suitable size and quality to allow structure determination by single-crystal XRD. In such cases, there is a clear opportunity to apply structure determination from powder XRD data in order to characterize the structural properties of product phases. [Pg.168]


See other pages where Solid-state reactions powders is mentioned: [Pg.180]    [Pg.85]    [Pg.303]    [Pg.540]    [Pg.421]    [Pg.422]    [Pg.193]    [Pg.355]    [Pg.2]    [Pg.4]    [Pg.242]    [Pg.511]    [Pg.125]    [Pg.248]    [Pg.42]    [Pg.44]    [Pg.45]    [Pg.45]    [Pg.58]    [Pg.62]    [Pg.107]    [Pg.134]    [Pg.600]    [Pg.38]    [Pg.3]    [Pg.2]    [Pg.4]    [Pg.89]    [Pg.167]    [Pg.186]    [Pg.192]    [Pg.170]    [Pg.146]    [Pg.477]    [Pg.104]    [Pg.35]    [Pg.45]    [Pg.106]   
See also in sourсe #XX -- [ Pg.74 , Pg.75 ]




SEARCH



Powder reactions

Powdered solids

Solid state reactions

© 2024 chempedia.info