Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solar System asteroids

According to their position in the solar system, asteroids can also be categorized into ... [Pg.119]

In fact, even in the solar system, despite the relative strengths of planetary attraction, there are constituents, the asteroids, with very irregular, chaotic behaviour. The issue of chaotic motion in molecules is an issue that will appear later with great salience.)... [Pg.55]

Our solar system consists of the Sun, the planets and their moon satellites, asteroids (small planets), comets, and meteorites. The planets are generally divided into two categories Earth-like (terrestrial) planets—Mercury, Venus, Earth, and Mars and Giant planets—Jupiter, Saturn, Uranus, and Neptune. Little is known about Pluto, the most remote planet from Earth. [Pg.444]

As evidenced by their low abundances, carbon compounds, water, and other volatiles such as nitrogen compounds were probably not significantly abundant constituents of the bulk of the solids that formed near the Earth. Many of the carriers of these volatiles condensed in cooler, more distant regions and were then scattered into the region where the Earth was forming. Eragments of comets and asteroids formed in the outer solar system still fall to Earth at a rate of 1 x 10 kg/yr and early in the... [Pg.23]

The process in which the solar system was formed was certainly extremely complex, so there is as yet no generally accepted theory to describe it. The different types of heavenly body (sun, planets, satellites, comets, asteroids) have very different characteristics which need to be explained using mechanisms which are valid for them all. [Pg.25]

Binzel et al. (1991) give an account of the origin and the development of the asteroids, while Gehrels (1996) discusses the possibility that they may pose a threat to the Earth. The giant planets, and in particular Jupiter, caused a great proportion of the asteroids to be catapulted out of the solar system these can be found in a region well outside the solar system, which is named the Oort cloud after its discoverer, Jan Hendrik Oort (1900-1992). Hie diameter of the cloud has been estimated as around 100,000 AU (astronomic units one AU equals the distance between the Earth and the sun, i.e., 150 million kilometres), and it contains up to 1012 comets. Their total mass has been estimated to be around 50 times that of the Earth (Unsold and Baschek, 2001). [Pg.27]

The two rare earth elements niobium (Nb) and tantalum (Ta) were the main subject of study in the investigation referred to. Both elements have very similar properties and almost always occur together in our solar system. However, the silicate crust of the Earth contains around 30% less niobium (compared to its sister tantalum). Where are the missing 30% of niobium They must be in the Earth s FeNi core. It is known that the metallic core can only take up niobium under huge pressures, and the conditions necessary for this may have been present on Earth. Analyses of meteorites from the asteroid belt and from Mars show that these do not have a niobium deficit. [Pg.30]

The adjective space in the chapter title loosely means extraterrestrial and could include planetology, the study of other solid bodies in the solar system, such as Mars, Comet Halley, or asteroid Ceres. While MS is vital to all planetary exploration, these devices function much the same way as laboratory MS, except that they are remotely operated, use less power, and are considerably more expensive. But space can also have the more restricted meaning of outside the ionosphere of any planet, but inside the solar system, which will be the area discussed in this chapter. The properties and challenges of this region are very different from the lab, although the science turns out to be often the same. [Pg.253]

Describe in detail the current definition of a planet. How does it differ from the definitions of stars and asteroids If size becomes a defining characteristic of a planet, hem will that change the solar system as we know it today ... [Pg.34]

Extraterrestrial materials consist of samples from the Moon, Mars, and a variety of smaller bodies such as asteroids and comets. These planetary samples have been used to deduce the evolution of our solar system. A major difference between extraterrestrial and terrestrial materials is the existence of primordial isotopic heterogeneities in the early solar system. These heterogeneities are not observed on the Earth or on the Moon, because they have become obliterated during high-temperature processes over geologic time. In primitive meteorites, however, components that acquired their isotopic compositions through interaction with constituents of the solar nebula have remained unchanged since that time. [Pg.93]

Star formation and the formation of star systems with planets around them, constantly takes place in dense interstellar clouds. The material present in these clouds is incorporated into the objects that are formed during this process. Pristine or slightly altered organic matter from the cloud from which our solar-system was formed is therefore present in the most primitive objects in the solar system comets, asteroids, and outer solar-system satellites. Pieces of asteroids (and perhaps comets) can be investigated with regards to these components through the analyses of meteorites (and eventually in samples returned from these bodies by spacecraft) in laboratories on Earth. The infall of asteroid and comet material from space may have contributed to the inventory of organic compounds on primordial Earth. [Pg.48]

Cosmochemistry is the study of the chemical composition of the universe and the processes that produced those compositions. This is a tall order, to be sure. Understandably, cosmochemistry focuses primarily on the objects in our own solar system, because that is where we have direct access to the most chemical information. That part of cosmochemistry encompasses the compositions of the Sun, its retinue of planets and their satellites, the almost innumerable asteroids and comets, and the smaller samples (meteorites, interplanetary dust particles or IDPs, returned lunar samples) derived from them. From their chemistry, determined by laboratory measurements of samples or by various remote-sensing techniques, cosmochemists try to unravel the processes that formed or affected them and to fix the chronology of these events. Meteorites offer a unique window on the solar nebula - the disk-shaped cocoon of gas and dust that enveloped the early Sun some 4.57 billion years ago, and from which planetesimals and planets accreted (Fig. 1.1). [Pg.1]

This isotope is particularly significant, as it is thought to have been a potent source of heating for asteroids and planets early in solar system history. A variety of other shortlived isotopes have now been confirmed in meteorites and are the basis for high-resolution chronometry of the early solar system. [Pg.13]

When the elements are ejected from the stars where they were produced, they are in the gas phase. Subsequently, they combine in various chemical compounds and most condense as solids. The nature of those compounds and their behavior in the various environments encountered on their way to becoming part of the solar system can, in principle, be determined from the basic chemical properties of the elements. Evaporation and condensation are also important in the solar system and have played a defining role in determining the properties of planets, moons, asteroids, and the meteorites derived from them, comets, dust... [Pg.48]

Some meteorites, and all planetary samples, have undergone melting and differentiation at some stage. Hence, the compositions of differentiated materials do not resemble solar system abundances. These samples can, however, tell us about various geochemical processes within asteroids and planets. [Pg.158]

The solar system formed from a well-mixed collection of gas and dust inherited from its parent molecular cloud. The bulk composition of this material, as best we can know it, is given by the solar system abundances of elements and isotopes (Tables 4.1 and 4.2). From this bulk material, the planets, asteroids, and comets formed, each with its own unique composition. The processes that produced these compositions separated, or fractionated, elements and isotopes from one another. By studying these elemental and isotopic fractionations, we can potentially identify the processes that separated the elements and can leam about the physical conditions involved. This is particularly important for understanding the early solar system, because its processes and conditions are not directly observable. [Pg.192]

Aluminum-26 is produced by stellar nucleosynthesis in a wide variety of stellar sites. Its abundance relative to other short-lived nuclides provides information about the stellar source(s) for short-lived nuclides and the environment in which the Sun formed. Aluminum-26 is also produced by interactions between heavier nuclei such as silicon atoms and cosmic rays. Aluminum-26 is one of several nuclides used to estimate the cosmic-ray exposure ages of meteorites as they traveled from their parent asteroids to the solar system. [Pg.285]

Nyquist, L. E., Kleine, T., Shih, C.-Y. and Reese, Y. D. (2009) The distribution of short-lived radioisotopes in the early solar system and the chronology of asteroid accretion,... [Pg.304]

In this chapter, we review what is known about the chronology of the solar system, based on the radioisotope systems described in Chapter 8. We start by discussing the age of materials that formed the solar system. Short-lived radionuclides also provide information about the galactic environment in which the solar system formed. We then consider how the age of the solar system is estimated from its oldest surviving materials - the refractory inclusions in chondrites. We discuss constraints on the accretion of chondritic asteroids and their subsequent metamorphism and alteration. Next, we discuss the chronology of differentiated asteroids, and of the Earth, Moon, and Mars. Finally, we consider the impact histories of the solar system bodies, the timescales for the transport of meteorites from their parent bodies to the Earth, and the residence time of meteorites on the Earth s surface before they disintegrate due to weathering. [Pg.308]

Eugster, O., Herzog, G. F., Marti, K. and Caffee, M. W. (2006) Irradiation records, cosmic-ray exposure ages, and transfer time of meteorites. In Meteorites and the Early Solar System II, eds. Lauretta, D. S. and McSween, H. Y., Jr. Tucson University of Arizona Press, pp. 829-851. A good summary of what is known about cosmic-ray exposure ages and the transfer of meteorites from the asteroid belt to Earth. [Pg.348]


See other pages where Solar System asteroids is mentioned: [Pg.423]    [Pg.218]    [Pg.423]    [Pg.218]    [Pg.95]    [Pg.100]    [Pg.100]    [Pg.101]    [Pg.27]    [Pg.159]    [Pg.162]    [Pg.165]    [Pg.194]    [Pg.390]    [Pg.398]    [Pg.21]    [Pg.16]    [Pg.93]    [Pg.16]    [Pg.25]    [Pg.85]    [Pg.117]    [Pg.179]    [Pg.288]    [Pg.317]    [Pg.319]    [Pg.329]    [Pg.338]    [Pg.346]    [Pg.372]   
See also in sourсe #XX -- [ Pg.139 ]




SEARCH



Asteroids

Solar system

© 2024 chempedia.info