Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sodium periodate production

Chemical degradation studies carried out on streptovaricias A and C, which are the primary components of the cmde complex, yielded substances shown ia Figure 1. Streptovaricia A (4), consumes two moles of sodium periodate to yield variciaal A [21913-68-8] (1), 0 2 200, which accounts for the ahphatic portion of the molecule, and prestreptovarone [58074-37-6] (2), C2C)H2C)N02, which accounts for the aromatic chromophore of the streptovaricias (Fig. 2). Streptovaricia G (9) is the only other streptovaricia that yields prestreptovaroae upoa treatmeat with sodium periodate. Treatmeat of streptovaricias A (4), B (5), C (6), E (8), and G (9) with sodium periodate and osmium tetroxide yields streptovarone [36108-44-8] (3), C24H23NO2, which is also produced by the reaction of prestreptovarone with sodium periodate and osmium tetroxide (4,65). A number of aliphatic products were isolated from the oxidation of streptovaricia C and its derivatives (66). [Pg.493]

The armual world production of sodium nitrate was steady throughout the early 1990s. About 85% is suppHed by the natural product. The maximum world production of sodium nitrate occurred around 1930, at 3,000,000 t/yr, but the highest production levels attained by the Chilean nitrate industry (ca 2,900,000 t/yr) occurred in the late 1920s. Synthetic sodium nitrate production peaked in the mid-1930s at 730,000 t/yr. During that period, the Chilean industry production decreased to 1,360,000 t/yr. [Pg.192]

The Cg-amine, originally obtained by the methanolysis of kasugamycin, on treatment with lead tetraacetate or sodium periodate afforded a nitrile amine, with evolution of carbon dioxide, showing a maximum at 2200 cm.-1. This reaction is explained only by the structure (13). The -N-C=N group of the product can be formed by oxidative decarboxylation and can be easily rationalized by the present understanding of such reagents (2, 13) as shown below. On the other hand, the treatment... [Pg.36]

The oxidation of diethyl 3,6-hexanooxepin-4,5-dicarboxylate with a mixture of sodium periodate and potassium permanganate as oxidizing agent gives diethyl 3-[(formyioxy)methylene]-l 0-oxocyclodec-l-en-l,2-dicarboxylate (2) in 91 % yield.130 A minor modification of the reaction conditions gives two products 2 (35 %) and a product which retains the oxepin structure (23 %) identified as the same lactone described in Section 1.2.1.1.129... [Pg.37]

Osmium tetroxide used in combination with sodium periodate can also effect alkene cleavage.191 Successful oxidative cleavage of double bonds using ruthenium tetroxide and sodium periodate has also been reported.192 In these procedures the osmium or ruthenium can be used in substoichiometric amounts because the periodate reoxidizes the metal to the tetroxide state. Entries 1 to 4 in Scheme 12.18 are examples of these procedures. Entries 5 and 6 show reactions carried out in the course of multistep syntheses. The reaction in Entry 5 followed a 5-exo radical cyclization and served to excise an extraneous carbon. The reaction in Entry 6 followed introduction of the allyl group by enolate alkylation. The aldehyde group in the product was used to introduce an amino group by reductive alkylation (see Section 5.3.1.2). [Pg.1127]

Quench the reaction by immediate gel filtration on a desalting column. If a dextran-based resin is used for the chromatography, the support itself will react with sodium periodate to quench excess reagent. Alternatively, N-acetylmethionine may be added to quench the reaction, because the thioether of the methionine side chain will react with periodate to form sulfoxide or sulfone products (Geoghegan and Stroh, 1992). In addition, sodium... [Pg.473]

The sirup and the crystalline acid (VIII), when oxidized with sodium periodate, gave the same aldehydes as those produced by the oxidation of the ester from D-glucose (II) and its saponification product (XXX), respectively. Hence, the mechanism of the reaction of D-galactose is the same as that of D-glucose and D-mannose. Moreover, the approximate yield from... [Pg.102]

C]gulono- 1,4-lactone. The hydroxyl groups at C-2 and -3 were protected by isopropylidenation, and the 5,6-glycol was oxidized by sodium periodate. Treatment of the resulting syrupy product with methanolic hydrogen chloride, followed by borohydride reduction and hydrolysis, afforded L-[5-,4C]arabinose. [Pg.162]

In 1997, Laux and Krause showed that ruthenium(III) chloride can catalyze the oxidation of allenes 48 to a,a -dihydroxy ketones 49 [17]. They used sodium periodate as a stoichiometric oxidant and obtained the products in moderate to good yields, probably owing to overoxidation (Scheme 17.16). The dihydroxy compound was formed with high diastereomeric excess in one example when a chiral allene was oxidized. [Pg.984]

The (—)-anisomycin work is presented in Scheme 35. Its key step centered around the formation of a pyrrolidine ring that possessed all three of the asymmetric centers present in the target this was done by nucleophilic displacement of a 3-tosyloxy function in an appropriately functionalized 6-amino-6-deoxy-p-i.-talose derivative, whose 1,2-diol was later released and oxidatively cleaved with sodium periodate. Grignard coupling, O-acetylation, and catalytic hydrogenation then furnished the desired natural-product target. [Pg.48]

Exposure of 144 to catalytic quantities of ruthenium tetroxide, generated in situ from ruthenium trichloride and sodium periodate, produces the symmetrical lactones 145 <2000JA9558>. It is proposed that the products form as a result of the ruthenium-catalyzed oxidative cleavage of the a-diketones to produce intermediate glycols (Equation 49). [Pg.1162]

An ester derived from prednisolone has found use as a topical ophthalmic antiinflammatory dmg. Cleavage of the side chain in prednisolone (31-1) with sodium periodate affords the corresponding carboxylic acid (30-2). Treatment of that product with propionyl chloride affords initially the ester at 17 along with some of the mixed anhydride. The anhydride is then hydrolyzed with a mild base to afford the 17-ester (31-3). Alkylation of the carboxylic acid with chloromethylchlorosufonyl chloride (from bromochloromethane and sulfonyl chloride) leads to the chloromethyl ester (31-4) and thus loteprednol [26]. [Pg.184]

Oxidation of the heterocycles with common reagents such as MCPBA, sodium periodate or hydrogen peroxide cleanly affords the sulfoxides and sulfones, and it is clear that the sulfur atom is the principal centre of reaction for electrophiles. While the sulfone is a quite inert functionality, the sulfoxides may be reduced to the sulfides with phosphorus pen-tasulfide as for the tetrahydro systems (78CJC1423). Positive halogen sources likewise react at sulfur, and the intermediate sulfonium halide rearranges, usually by 1,2-shift to the a-halo product. [Pg.904]

The sulfide 1 (0.75 mmol) is dissolved in dichloromethane (2-3 mL) and adsorbed over silica supported sodium periodate (20%, 1.36 g, 1.28 mmol) that is wetted with 0.3 mL of water by thoroughly mixing on a vortex mixture. The adsorbed powdered material is transferred to a glass test tube and is inserted in an alumina bath (alumina 100 g, mesh 65-325, Fisher scientific bath 5.7 cm diameter) inside the microwave oven. The compound is irradiated for the time specified in the table and the completion of the reaction is monitored by TLC examination. After completion of the reaction, the product is extracted into ethyl acetate (2x15 mL). The removal of solvent at reduced pressure affords crude sulfoxide 2 that contains less than 5% sulfone. The final purification is achieved by column chromatography over silica gel column or a simple crystallization. [Pg.36]


See other pages where Sodium periodate production is mentioned: [Pg.199]    [Pg.35]    [Pg.387]    [Pg.200]    [Pg.122]    [Pg.130]    [Pg.131]    [Pg.136]    [Pg.393]    [Pg.803]    [Pg.869]    [Pg.103]    [Pg.408]    [Pg.97]    [Pg.148]    [Pg.406]    [Pg.50]    [Pg.76]    [Pg.150]    [Pg.12]    [Pg.634]    [Pg.430]    [Pg.462]    [Pg.1123]    [Pg.386]    [Pg.585]    [Pg.35]    [Pg.384]    [Pg.354]    [Pg.572]    [Pg.83]    [Pg.128]    [Pg.135]    [Pg.314]    [Pg.559]    [Pg.408]   
See also in sourсe #XX -- [ Pg.144 ]




SEARCH



Product Period

Sodium periodate

Sodium periodates

Sodium production

Sodium products

© 2024 chempedia.info