Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sodium configuration

To date there is no evidence that sodium forms any chloride other than NaCl indeed the electronic theory of valency predicts that Na" and CU, with their noble gas configurations, are likely to be the most stable ionic species. However, since some noble gas atoms can lose electrons to form cations (p. 354) we cannot rely fully on this theory. We therefore need to examine the evidence provided by energetic data. Let us consider the formation of a number of possible ionic compounds and first, the formation of sodium dichloride , NaCl2. The energy diagram for the formation of this hypothetical compound follows the pattern of that for NaCl but an additional endothermic step is added for the second ionisation energy of sodium. The lattice energy is calculated on the assumption that the compound is ionic and that Na is comparable in size with Mg ". The data are summarised below (standard enthalpies in kJ) ... [Pg.75]

Sodium / -toluenesulfoiiainide (319) reacts with the allylic lactone 318 to give an allylic tosylamide with retention of configuration[196]. [Pg.333]

The third period begins with sodium and ends with argon The atomic number Z of sodium is 11 and so a sodium atom has 11 electrons The maximum number of electrons in the Is 2s and 2p orbitals is ten and so the eleventh electron of sodium occupies a 3s orbital The electron configuration of sodium IS 2s 2p 2p 2p is ... [Pg.10]

Whether an element is the source of the cation or anion in an ionic bond depends on several factors for which the periodic table can serve as a guide In forming ionic compounds elements at the left of the periodic table typically lose electrons giving a cation that has the same electron configuration as the nearest noble gas Loss of an elec tron from sodium for example yields Na which has the same electron configuration as neon... [Pg.11]

Transfer of an electron from a sodium atom to a chlorine atom yields a sodium cation and a chloride anion both of which have a noble gas electron configuration... [Pg.12]

Wnte an equation clearly showing the stereochemistry of the starting material and the prod uct for the reaction of (S) 1 bromo 2 methylbutane with sodium iodide in acetone What is the configuration R or S) of the product" ... [Pg.359]

In the sodium atom pairs of 3/2 states result from the promotion of the 3s valence electron to any np orbital with n > 2. It is convenient to label the states with this value of n, as n P 1/2 and n f 3/2, the n label being helpful for states that arise when only one electron is promoted and the unpromoted electrons are either in filled orbitals or in an x orbital. The n label can be used, therefore, for hydrogen, the alkali metals, helium and the alkaline earths. In other atoms it is usual to precede the state symbols by the configuration of the electrons in unfilled orbitals, as in the 2p3p state of carbon. [Pg.215]

Oxidation. The oxidation reactions of organoboranes have been reviewed (5,7,215). Hydroboration—oxidation is an anti-Markovnikov cis-hydration of carbon—carbon multiple bonds. The standard oxidation procedure employs 30% hydrogen peroxide and 3 M sodium hydroxide. The reaction proceeds with retention of configuration (216). [Pg.314]

The reactions of trialkylboranes with bromine and iodine are gready accelerated by bases. The use of sodium methoxide in methanol gives good yields of the corresponding alkyl bromides or iodides. AH three primary alkyl groups are utilized in the bromination reaction and only two in the iodination reaction. Secondary groups are less reactive and the yields are lower. Both Br and I reactions proceed with predominant inversion of configuration thus, for example, tri( X(9-2-norbomyl)borane yields >75% endo product (237,238). In contrast, the dark reaction of bromine with tri( X(9-2-norbomyl)borane yields cleanly X(9-2-norbomyl bromide (239). Consequentiy, the dark bromination complements the base-induced bromination. [Pg.315]

Mercuration. Mercury(II) salts react with alkyl-, alkenyl-, and arylboranes to yield organomercurials, which are usehil synthetic intermediates (263). For example, dialkyhnercury and alkyhnercury acetates can be prepared from primary trialkylboranes by treatment with mercury(II) chloride in the presence of sodium hydroxide or with mercury(II) acetate in tetrahydrofuran (3,264). Mercuration of 3 -alkylboranes is sluggish and requires prolonged heating. Alkenyl groups are transferred from boron to mercury with retention of configuration (243,265). [Pg.315]

Only body-centered cubic crystals, lattice constant 428.2 pm at 20°C, are reported for sodium (4). The atomic radius is 185 pm, the ionic radius 97 pm, and electronic configuration is lE2E2 3T (5). Physical properties of sodium are given ia Table 2. Greater detail and other properties are also available... [Pg.161]

Alkannin occurs in the roots of the plant as the alkah-sensitive ester of angelic acid (62). It may be extracted from the roots by using boiling light petroleum ether. Treatment of this extract with dilute sodium hydroxide gives a blue solution from which the dye is precipitated by the addition of acid. The cmde product is purified by vacuum sublimation (63). Its stmcture (11) is a hydroxylated naphthoquinone with a long, unsaturated side chain (64,65) it has the (3)-configuration. [Pg.398]

Franklin, R.E., Gosling, R.G. Molecular stmcture of nucleic acids. Molecular configuration in sodium thymonucleate. Nature 171 740-741, 1953. [Pg.126]

When bicyclo[2.2.2]octyl brosylate was solvolyzed in acetic acid containing sodium acetate, the products were a mixture of bicyclo[2.2.2]octyl acetate and bicyclo[3.2.1]octyl acetate, each of which was optically active. The formation of bicyclo[2.2.2]octyl acetate was found to proceed with 82 15% retention of configuration, a result which is in... [Pg.328]


See other pages where Sodium configuration is mentioned: [Pg.325]    [Pg.159]    [Pg.1299]    [Pg.325]    [Pg.159]    [Pg.1299]    [Pg.363]    [Pg.2589]    [Pg.8]    [Pg.8]    [Pg.28]    [Pg.390]    [Pg.680]    [Pg.383]    [Pg.322]    [Pg.512]    [Pg.311]    [Pg.499]    [Pg.178]    [Pg.500]    [Pg.465]    [Pg.439]    [Pg.18]    [Pg.29]    [Pg.11]    [Pg.283]    [Pg.334]    [Pg.497]    [Pg.263]    [Pg.303]    [Pg.116]    [Pg.113]    [Pg.179]    [Pg.562]    [Pg.276]    [Pg.76]    [Pg.81]    [Pg.17]    [Pg.27]    [Pg.33]   
See also in sourсe #XX -- [ Pg.260 ]




SEARCH



© 2024 chempedia.info