Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sodium cation complexation with crown ethers

In contrast to conventional cation exchangers, a reversed elution order is observed with crown ether phases, which is mainly determined by the size ratio between crown ether ring and alkali metal ion. Due to the high affinity of poly(benzo-15-crown-5) toward potassium and rubidium ions, these are more strongly retained than lithium, sodium, and cesium ions, respectively. However, the complexing properties of crown ethers also depend on the counter ion being employed. Thus, in potassium salts, for example, an increase in retention in the order KC1 < KBr < KI is observed with an increasing size of the counter ion. [Pg.178]

Figure 4.11 Molecular structures of typical crown-ether complexes with alkali metal cations (a) sodium-water-benzo-I5-crown-5 showing pentagonal-pyramidal coordination of Na by 6 oxygen atoms (b) 18-crown-6-potassium-ethyl acetoacetate enolate showing unsymmelrical coordination of K by 8 oxygen atoms and (c) the RbNCS ion pair coordinated by dibenzo-I8-crown-6 to give seven-fold coordination about Rb. Figure 4.11 Molecular structures of typical crown-ether complexes with alkali metal cations (a) sodium-water-benzo-I5-crown-5 showing pentagonal-pyramidal coordination of Na by 6 oxygen atoms (b) 18-crown-6-potassium-ethyl acetoacetate enolate showing unsymmelrical coordination of K by 8 oxygen atoms and (c) the RbNCS ion pair coordinated by dibenzo-I8-crown-6 to give seven-fold coordination about Rb.
A typical phase transfer catalytic reaction of the liquid/liquid type is the cyanation of an alkyl halide in an organic phase using sodium or potassium cyanide in an aqueous phase. When these phases are stirred and heated together very little reaction occurs. However, addition of a small amount of crown ether (or cryptand) results in the reaction occurring to yield the required nitrile. The crown serves to transport the cyanide ion, as its ion pair with the complexed potassium cation, into the organic phase allowing the reaction to proceed. [Pg.109]

The proportion of the /rans-O-alkylated product [101] increases in the order no ligand < 18-crown-6 < [2.2.2]-cryptand. This difference was attributed to the fact that the enolate anion in a crown-ether complex is still capable of interacting with the cation, which stabilizes conformation [96]. For the cryptate, however, cation-anion interactions are less likely and electrostatic repulsion will force the anion to adopt conformation [99], which is the same as that of the free anion in DMSO. This explanation was substantiated by the fact that the anion was found to have structure [96] in the solid state of the potassium acetoacetate complex of 18-crown-6 (Cambillau et al., 1978). Using 23Na NMR, Cornelis et al. (1978) have recently concluded that the active nucleophilic species is the ion pair formed between 18-crown-6 and sodium ethyl acetoacetate, in which Na+ is co-ordinated to both the anion and the ligand. [Pg.320]

Initially, on addition of sodium cations to a solution of the ligand, two distinct CV waves were observed, corresponding to the uncomplexed and complexed compound [1] (Fig. 4) (Chariot et al., 1962). Hie wave at the higher positive potential corresponds to the solution complexed species. Hie oxidized ferrocene crown ether has a lower binding constant with sodium than the... [Pg.6]

FABMS has been used as a semiquantitative indication of the selectivity of receptors for particular guest metal cations (Johnstone and Rose, 1983). The FABMS competition experiment on [7] with equimolar amounts of the nitrates of sodium, potassium, rubidium and caesium gave gas-phase complex ions of ([7] + K)+ ion (m/z 809) and a minor peak ([7] + Rb)+ ion (m/z 855) exclusively. The relative peak intensities therefore suggested a selectivity order of K+ Rb+ Na+, Cs+, indicative of the bis-crown effect, the ability of bis-crown ether ligands to complex a metal cation of size larger than the cavity of a single crown ether unit, forming a sandwich structure. [Pg.12]

The conjugation in the molecular wire may be disrupted or modulated to create systems with different properties. For example, a porphyrin Ceo donor-acceptor system linked with a conjugated binaphthyl unit, has a preference for the atropi-somer where the fullerene unit is closer to the porphyrin system, thus increasing the through space interactions [82]. The charge transfer process on a dyad containing a crown ether in the linker structure can be modulated by complexation/ decomplexation of sodium cations [83] but even more interesting is the construction of supramolecular systems where the donor and acceptor moieties are... [Pg.135]

Solvent or ligand Interactions with tight Ion pairs produce externally complexed tight Ion pairs and/or ligand separated Ion pairs. The stability of the complexes depends on solvent, temperature, type of crown and the nature of the cation. For example, In ethereal solvents benzo-15-crown-5 and fluorenyl sodium (Fl-.Na ) form the two Isomeric complexes I and II depicted In reaction 1, but the ratio I/II Is highly solvent sensitive (9) (If the bound solvent In II Is Included In the structure of II, the two complexes of course can actually not be considered Isomeric). [Pg.80]

An important class of alkali and alkaline earth metal amides are Mulvey s inverse crown complexes (also discussed in Chapter 2, dealing with sodium and potassium amides), in which cationic homo- or heterometallic macrocycles are hosts to anionic guest moieties.The term inverse crown indicates that the Lewis acidic/Lewis basic sites are reversed or exchanged in comparison to conventional crown ether complexes. Scheme 3.9 illustrates the range of recently published alkali and alkaline earth metal amide inverse crown complexes (for related Zn species see Chapter 7 on group 12 amides). [Pg.56]

Sodium or potassium ions can also participate in the phase-transfer process when they are converted to lipophilic cations by complexation or by strong specific solvation. A variety of neutral organic compounds are able to form reasonably stable complexes with K+ or Na + and can act as catalysts in typical phase-transfer processes. Such compounds include monocyclic polyethers, or crown ethers (1), and bicyclic aminopolyethers (cryptates) (2). They can solubilize inorganic salts in nonpolar solvents and are particularly recommended for reactions of naked anions. Applications of these compounds have been studied.12,21-31... [Pg.179]

The tren-based heteroditopic receptor 22, featuring a tripodal tetrahedral amide hydrogen-bond anion-recognition site in combination with benzo-15-crown-5 ether cation-binding moieties, has been found to cooperatively bind chloride, iodide, and perrhenate anions via co-bound crown ether-complexed sodium cations. It also can efficiently extract the radioactive sodium pertechnetate from simulated aqueous nuclear waste streams. The anion-binding affinity of 22 is considerably reduced in the absence of a co-bound cation <1999CC1253>... [Pg.675]


See other pages where Sodium cation complexation with crown ethers is mentioned: [Pg.250]    [Pg.289]    [Pg.81]    [Pg.5441]    [Pg.309]    [Pg.5440]    [Pg.824]    [Pg.824]    [Pg.1872]    [Pg.184]    [Pg.294]    [Pg.42]    [Pg.108]    [Pg.20]    [Pg.31]    [Pg.110]    [Pg.189]    [Pg.320]    [Pg.321]    [Pg.54]    [Pg.88]    [Pg.106]    [Pg.149]    [Pg.180]    [Pg.169]    [Pg.215]    [Pg.40]    [Pg.303]    [Pg.554]    [Pg.257]    [Pg.3]    [Pg.89]    [Pg.95]    [Pg.113]    [Pg.115]    [Pg.554]   
See also in sourсe #XX -- [ Pg.70 , Pg.71 ]




SEARCH



18-Crown-6 complexes

Cation complexation with crown ethers

Cation crown ethers

Cations with

Complexation, crown

Complexes crown ethers

Crown ethers cationic complexation

Crown ethers complexes with

Crown ethers, complexation with

Ether complexes

Sodium cation

Sodium cation complexes

Sodium cation ethers

Sodium complexes crown ethers

© 2024 chempedia.info