Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sodium borohydride-Aluminum chloride

Reduction of 9 with sodium borohydride/aluminum chloride has been reported.13... [Pg.267]

Similar results can be obtained if the borane is substituted for the system Sodium Borohydride/Aluminum Chloride. ... [Pg.454]

The reduction of indole (198) has also been achieved with sodium borohydride-aluminum chloride mixtures (5 3) in pyridine at room temperature." The pyridine serves to moderate the reducing agent and a 68% yield of indoline (201) was obtained along with unchanged starting material. When 2-methylpyridine replaced pyridine, no reduction was observed. [Pg.36]

Y. Kikugawa. Reduction of alkylindoles with sodium borohydride-aluminum chloride in pyridine. Ghem. and Pharm. Bull. Japan), 1978, 26, 108. [Pg.58]

Sodium amalgam, 183, 326 Sodium-Ammonia, 355-356 Sodium benzeneselenoate, 356 Sodium bis(2-methoxyethoxy)aluminum hydride, 357,448 Sodium borohydride, 357-359 Sodium borohydride-Cadmium chloride, 359... [Pg.266]

The azidohydrins obtained by azide ion opening of epoxides, except for those possessing a tertiary hydroxy group, can be readily converted to azido mesylates on treatment with pyridine/methanesulfonyl chloride. Reduction and subsequent aziridine formation results upon reaction with hydrazine/ Raney nickel, lithium aluminum hydride, or sodium borohydride/cobalt(II)... [Pg.27]

Substituted dibenz[6,/]oxepin-10(l l//)-ones can be reduced with sodium borohydride or lithium aluminum hydride and treated with thionyl chloride to afford the chloro derivatives which undergo dehydrohalogenation when heated or treated with base to give products... [Pg.20]

Synthesis ofLysergic Acid, By reacting N-benzoyl-3-(B-carboxyethyl)-dihydroindole (see JCS, 3158 (1931) for the preparation of this compound) with thionyl chloride, followed by aluminum chloride gives l-benzoyl-5-keto-l,2,2a,3,4,5-hexahydrobenzindole. This is then brominated to give the 4-bromo-derivative, which is converted to the ketol-ketone by reacting with methylamine acetone ethylene ketol. This is then hydrolized by acid to yield the diketone and treated with sodium methoxide to convert it to the tetracyclic ketone. Acetylate and reduce this ketone with sodium borohydride to get the alcohol, which is converted to the hydrochloride form, as usual. [Pg.54]

When subjected to mercury acetate the ynone 78 underwent a 5-endo-dig cyclization and after work-up with aqueous sodium chloride, furnished the pyrrolinones 79 and 80 in a ratio of 89/11. The mixture of pyrrolinones was reduced directly with sodium borohydride to the iST-Boc-pyrrolidinol 81 which was obtained as a single diastereoisomer. Reduction of the carbamate with lithium aluminum hydride gave (+)-preussin (2) in 37% overall yield. [Pg.23]

A boron analog - sodium borohydride - was prepared by reaction of sodium hydride with trimethyl borate [84 or with sodium fluoroborate and hydrogen [55], and gives, on treatment with boron trifluoride or aluminum chloride, borane (diborane) [86. Borane is a strong Lewis acid and forms complexes with many Lewis bases. Some of them, such as complexes with dimethyl sulfide, trimethyl amine and others, are sufficiently stable to have been made commercially available. Some others should be handled with precautions. A spontaneous explosion of a molar solution of borane in tetrahydrofuran stored at less than 15° out of direct sunlight has been reported [87]. [Pg.14]

Alkyl chlorides are with a few exceptions not reduced by mild catalytic hydrogenation over platinum [502], rhodium [40] and nickel [63], even in the presence of alkali. Metal hydrides and complex hydrides are used more successfully various lithium aluminum hydrides [506, 507], lithium copper hydrides [501], sodium borohydride [504, 505], and especially different tin hydrides (stannanes) [503,508,509,510] are the reagents of choice for selective replacement of halogen in the presence of other functional groups. In some cases the reduction is stereoselective. Both cis- and rrunj-9-chlorodecaIin, on reductions with triphenylstannane or dibutylstannane, gave predominantly trani-decalin [509]. [Pg.63]

Alkyl bromides and especially alkyl iodides are reduced faster than chlorides. Catalytic hydrogenation was accomplished in good yields using Raney nickel in the presence of potassium hydroxide [63] Procedure 5, p. 205). More frequently, bromides and iodides are reduced by hydrides [505] and complex hydrides in good to excellent yields [501, 504]. Most powerful are lithium triethylborohydride and lithium aluminum hydride [506]. Sodium borohydride reacts much more slowly. Since the complex hydrides are believed to react by an S 2 mechanism [505, 511], it is not surprising that secondary bromides and iodides react more slowly than the primary ones [506]. The reagent prepared from trimethoxylithium aluminum deuteride and cuprous iodide... [Pg.63]

The difference in the reactivity of benzylic versus aromatic halogens makes it possible to reduce the former ones preferentially. Lithium aluminum hydride replaced only the benzylic bromine by hydrogen in 2-bromomethyl-3-chloro-naphthalene (yield 75%) [540]. Sodium borohydride in diglyme reduces, as a rule, benzylic halides but not aromatic halides (except for some iodo derivatives) [505, 541]. Lithium aluminum hydride hydrogenolyzes benzyl halides and aryl bromides and iodides. Aryl chlorides and especially fluorides are quite resistant [540,542], However, in polyfluorinated aromatics, because of the very low electron density of the ring, even fluorine was replaced by hydrogen using lithium aluminum hydride [543]. [Pg.67]

Transformation of ketones to alcohols has been accomplished by many hydrides and complex hydrides by lithium aluminum hydride [55], by magnesium aluminum hydride [89], by lithium tris tert-butoxy)aluminum hydride [575], by dichloroalane prepared from lithium aluminum hydride and aluminum chloride [816], by lithium borohydride [750], by lithium triethylboro-hydride [100], by sodium borohydride [751,817], by sodium trimethoxyborohy-dride [99], by tetrabutylammonium borohydride [771] and cyanoborohydride [757], by chiral diisopinocampheylborane (yields 72-78%, optical purity 13-37%) [575], by dibutyl- and diphenylstannane [114], tributylstanrume [756] and others Procedure 21, p. 209). [Pg.107]

Reduction of carbonyl to methylene in aromatic ketones was also achieved by (dane prepared from lithium aluminum hydride and aluminum chloride [770], by soditim borohydride in triiluoroacetic acid [841 with triethylsilane in trifluoroacetic acid [555, 777], with sodium in refluxing ethanol [842], with zinc in hydrochloric acid [843] and with hydrogen iodide and phosphorus [227], geiibrally in good to high yields. [Pg.113]

Reduction of aromatic carboxylic acids to alcohols can be achieved by hydrides and complex hydrides, e.g. lithium aluminum hydride 968], sodium aluminum hydride [55] and sodium bis 2-methoxyethoxy)aluminum hydride [544, 969, 970], and with borane (diborane) [976] prepared from sodium borohydride and boron trifluoride etherate [971, 977] or aluminum chloride [755, 975] in diglyme. Sodium borohydride alone does not reduce free carboxylic acids. Anthranilic acid was reduced to the corresponding alcohol by electroreduction in sulfuric acid at 20-30° in 69-78% yield [979],... [Pg.139]

High yields (76-81%) of alcohols are also obtained by adding solutions of acyl chlorides in anhydrous dioxane or diethyl carbitol to a suspension of sodium borohydride in dioxane and brief heating of the mixtures on the steam bath [751], by stirring solutions of acyl chlorides in ether for 2-4 hours at room temperature with aluminum oxide (activity I) impregnated with a 50% aqueous solution of sodium borohydride (Alox) (yields 80-90%) [1014], by refluxing acyl chlorides with ether solutions of sodium trimethoxyborohydride [99], or by treatment of acyl chlorides in dichloromethane solutions with tetrabutylammonium borohydride at —78° [771]. A 94% yield of neopentyl alcohol was achieved by the reaction of trimethylacetyl chloride with tert-butylmagnesium chloride [324]. [Pg.146]

Borane prepared by adding aluminum chloride to a solution of sodium borohydride in diethylene glycol dimethyl ether (diglyme) reduced aliphatic and aromatic esters to alcohols in quantitative yields in 3 hours at 25° using a 100% excess, or in 1 hour at 75° using a 25% excess of lithium borohydride over 2 mol of the hydride per mol of the ester [738] Procedure 20, p. 209). [Pg.155]


See other pages where Sodium borohydride-Aluminum chloride is mentioned: [Pg.285]    [Pg.127]    [Pg.288]    [Pg.307]    [Pg.285]    [Pg.127]    [Pg.288]    [Pg.307]    [Pg.470]    [Pg.730]    [Pg.730]    [Pg.239]    [Pg.382]    [Pg.515]    [Pg.293]    [Pg.161]    [Pg.108]    [Pg.69]    [Pg.206]    [Pg.252]    [Pg.170]    [Pg.1008]    [Pg.1343]    [Pg.17]    [Pg.288]    [Pg.107]    [Pg.316]    [Pg.333]    [Pg.22]    [Pg.70]    [Pg.96]    [Pg.159]    [Pg.160]   
See also in sourсe #XX -- [ Pg.285 ]

See also in sourсe #XX -- [ Pg.1053 ]




SEARCH



Aluminum chloride

Aluminum chloride borohydride

Aluminum sodium chloride

Sodium aluminum

Sodium aluminum chlorid

© 2024 chempedia.info