Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sodium acetate, effect

Sodium Hydroxide and Sodium Acetate Effect on NH Volatility. Ammonia volatility measurements at various concentrations of so-dium hydroxide and sodium acetate at 80°C are given in Tables 23 and 24 respectively. Data on the effect of sodium hydroxide were measured using an ammonia probe from Orion Research Company. [Pg.222]

The observation that a system at equilibrium responds to a stress by reequilibrating in a manner that diminishes the stress, is formalized as Le Chatelier s principle. One of the most common stresses that we can apply to a reaction at equilibrium is to change the concentration of a reactant or product. We already have seen, in the case of sodium acetate and acetic acid, that adding a product to a reaction mixture at equilibrium converts a portion of the products to reactants. In this instance, we disturb the equilibrium by adding a product, and the stress is diminished by partially reacting the excess product. Adding acetic acid has the opposite effect, partially converting the excess acetic acid to acetate. [Pg.148]

Tendering Effects. CeUulosic materials dyed with sulfur black have been known to suffer degradation by acid tendering when stored under moist warm conditions. This effect may result from the Hberation of small quantities of sulfuric acid which occurs when some of the polysulfide links of the sulfur dye are mptured. A buffer, such as sodium acetate, or a dilute alkaH in the final rinse, especially after oxidation in acidic conditions, may prevent this occurrence. Copper salts should never be used with sulfur black dyes because they cataly2e sulfuric acid generation. Few instances of tendering with sulfur dyes other than black occur and the problem is largely confined to cotton. [Pg.171]

However, this method is appHed only when esterification cannot be effected by the usual acid—alcohol reaction because of the higher cost of the anhydrides. The production of cellulose acetate (see Fibers, cellulose esters), phenyl acetate (used in acetaminophen production), and aspirin (acetylsahcyhc acid) (see Salicylic acid) are examples of the large-scale use of acetic anhydride. The speed of acylation is greatiy increased by the use of catalysts (68) such as sulfuric acid, perchloric acid, trifluoroacetic acid, phosphoms pentoxide, 2inc chloride, ferric chloride, sodium acetate, and tertiary amines, eg, 4-dimethylaminopyridine. [Pg.380]

The esterification reaction may be carried out with a number of different anhydrides but the literature indicates that acetic anhydride is preferred. The reaction is catalysed by amines and the soluble salts of the alkali metals. The presence of free acid has an adverse effect on the esterification reaction, the presence of hydrogen ions causing depolymerisation by an unzipping mechanism. Reaction temperatures may be in the range of 130-200°C. Sodium acetate is a particularly effective catalyst. Esterification at 139°C, the boiling point of acetic anhydride, in the presence of 0.01% sodium acetate (based on the anhydride) is substantially complete within 5 minutes. In the absence of such a catalyst the percentage esterification is of the order of only 35% after 15 minutes. [Pg.534]

Preparation of 5a,6a-0xido-17a-Hydroxya//opregnane-3,20-dione 3,20-Bis-(Ethy ene Ketal) A solution was prepared by heating 19.96 g (0.0477 mol) of 17a-hydroxyprogesterone 3,20-bis-(ethylene ketal) and 500 ml of benzene. After the solution was effected the flask was cooled to 5°C and a mixture of 3.68 g (0.0449 mol) of sodium acetate and 174 ml of 40% peracetic acid was added with stirring. The reaction mixture was stirred in the ice bath for 3 hours. The lower peracid layer was separated, diluted with water and extracted twice with benzene. [Pg.915]

Example 8. What effect has the addition of 0.1 mol of anhydrous sodium acetate to 1 L of 0.1 M acetic acid upon the degree of dissociation of the acid ... [Pg.35]

Cyclization of hydrazonyl chloride 797 with aniline gave triazolotriazine 798 (R2 = PhNH) (80JHC209). Cyclization of 797 was also effected by the action of sodium acetate to give 798 (R2 = Cl) (83JHC285). Cyclization of 799 by the action of sulfuric acid gave a triazolotriazine formulated as 800 or 801 (83JHC285). [Pg.137]

Fig. 4.3.1 Effect of pH on the total light emission of phialidin (A), and the temperature stability profiles of phialidin (minute open circles) and aequorin (solid line) (B). In A, each buffer contained 0.1 M CaCl2 plus 0.1 M Tris, glycine or sodium acetate, the pH being adjusted with NaOH or HC1. In B, the photoprotein samples in 10 mM Tris-EDTA buffer solution, pH 8.0, were maintained at a test temperature for 10 min, and immediately cooled in an ice water bath. Then total luminescence activity was measured by injecting 1ml of 0.1 M CaCl2/Tris-HCl, pH 7.0, to 10 pd of the test solution. From Levine and Ward (1982), with permission from Elsevier. Fig. 4.3.1 Effect of pH on the total light emission of phialidin (A), and the temperature stability profiles of phialidin (minute open circles) and aequorin (solid line) (B). In A, each buffer contained 0.1 M CaCl2 plus 0.1 M Tris, glycine or sodium acetate, the pH being adjusted with NaOH or HC1. In B, the photoprotein samples in 10 mM Tris-EDTA buffer solution, pH 8.0, were maintained at a test temperature for 10 min, and immediately cooled in an ice water bath. Then total luminescence activity was measured by injecting 1ml of 0.1 M CaCl2/Tris-HCl, pH 7.0, to 10 pd of the test solution. From Levine and Ward (1982), with permission from Elsevier.
Some observations are important for improvement of the yield and for the elucidation of the mechanism of the Meerwein reaction. Catalysts are necessary for the process. Cupric chloride is used in almost all cases. The best arylation yields are obtained with low CuCl2 concentrations (Dickerman et al., 1969). One effect of CuCl2 was detected by Meerwein et al. (1939) in their work in water-acetone systems. They found that in solutions of arenediazonium chloride and sodium acetate in aqueous acetone, but in the absence of an alkene, the amount of chloroacetone formed was only one-third of that obtained in the presence of CuCl2. They concluded that chloroacetone is formed according to Scheme 10-50. The formation of chloroacetone with CuCl2 in the absence of a diazonium salt (Scheme 10-51) was investigated by Kochi (1955 a, 1955 b). Some Cu11 ion is reduced by acetone to Cu1 ion, which provides the electron for the transfer to the diazonium ion (see below). [Pg.247]

Neutral PET hydrolysis usually takes place under high temperature and pressure in die presence of alkali metal acetate transesterification catalysts.28 It is diought diat the catalytic effect observed on the part of zinc salts is the result of electrolytic changes induced in die polymer-water interface during the hydrolysis process. The catalytic effect of zinc and sodium acetates is thought to be due to die destabilization of die polymer-water interface in the hydrolysis process. [Pg.543]

We have seen how to estimate the pH of a solution of a weak acid or base (Chapter 10), but suppose that a salt of the acid or base is also present. How does that salt affect the pH of the solution Suppose we have a dilute hydrochloric acid solution and add to it appreciable concentrations of the conjugate base, the Cl- ion, as sodium chloride. Because the acid is strong, its conjugate base is extremely weak and so has no measurable effect on pH. The pH of 0.10 M HCl(aq) is about 1.0, even after 0.10 mol NaCl has been added to a liter of the solution. Now suppose instead that the solution contains acetic acid to which sodium acetate has been added (the acetate ion, CH jC()2, is the conjugate base of CH COOH). Because the conjugate base of a weak acid is a base, we can predict that adding acetate ions (as sodium acetate) to a solution of acetic acid will increase the pH of the solution. Similarly, suppose we have a solution of ammonia and add ammonium chloride to it. The... [Pg.565]

Solid-surface room-temperature phosphorescence (RTF) is a relatively new technique which has been used for organic trace analysis in several fields. However, the fundamental interactions needed for RTF are only partly understood. To clarify some of the interactions required for strong RTF, organic compounds adsorbed on several surfaces are being studied. Fluorescence quantum yield values, phosphorescence quantum yield values, and phosphorescence lifetime values were obtained for model compounds adsorbed on sodiiun acetate-sodium chloride mixtures and on a-cyclodextrin-sodium chloride mixtures. With the data obtained, the triplet formation efficiency and some of the rate constants related to the luminescence processes were calculated. This information clarified several of the interactions responsible for RTF from organic compounds adsorbed on sodium acetate-sodium chloride and a-cyclodextrin-sodium chloride mixtures. Work with silica gel chromatoplates has involved studying the effects of moisture, gases, and various solvents on the fluorescence and phosphorescence intensities. The net result of the study has been to improve the experimental conditions for enhanced sensitivity and selectivity in solid-surface luminescence analysis. [Pg.155]

Note The sodium acetate was added to the mobile phase solely to improve the separation. It had no detectable effect on the production of fluorescence during thermal activation, since the fluorescence reaction also occurred in the absence of sodium acetate. [Pg.25]

The postulation of the +4 oxidation state of cobalt is necessary to account for the retarding influence of Pb(II). The existence of a dimeric species of Co(II) acetate is required by the rate law and is confirmed by spectrophotometric and solubility measurements. The existence of ionic species of the reactants is inferred by the rate increase on addition of sodium acetate, an observation which cannot be attributed to a salt effect because sodium perchlorate produces a rate decrease. On this scheme an explanation of the effect of water on the stoichiometry is that the step... [Pg.242]

Fluorination can be carried out using fluorine diluted with an inert gas. However, great care is necessary to avoid uncontrolled reaction.21 Several other reagents have been devised that are capable of aromatic fluorination.22 Acetyl hypofluorite can be prepared in situ from fluorine and sodium acetate.23 This reagent effects fluorination... [Pg.1009]

Phenyl indandiones With an acidic hydrogen often interfere with clot formation. When electron withdrawing groups are present in the p-position, acidity is increased and activity goes up. The opposite effect is seen with electron-donating substituents. Synthesized in the usual way, the anticoagulant bromindione (15) results from sodium acetate-catalyzed condensation of phthalic anhydride and p-a-bromophenyl-acetic acid. ... [Pg.210]


See other pages where Sodium acetate, effect is mentioned: [Pg.504]    [Pg.504]    [Pg.234]    [Pg.311]    [Pg.240]    [Pg.117]    [Pg.452]    [Pg.379]    [Pg.15]    [Pg.321]    [Pg.1264]    [Pg.516]    [Pg.517]    [Pg.99]    [Pg.116]    [Pg.117]    [Pg.125]    [Pg.280]    [Pg.463]    [Pg.156]    [Pg.163]    [Pg.263]    [Pg.60]    [Pg.243]    [Pg.243]    [Pg.704]    [Pg.122]    [Pg.264]    [Pg.191]   
See also in sourсe #XX -- [ Pg.66 ]




SEARCH



Acetate effect

Sodium acetate

© 2024 chempedia.info