Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Skeletal rearrangement, reductive

Lithium/liq. ammonia Alcohols from oxido compds. with skeletal rearrangement Reduction of cyclopropyloxido compds. [Pg.22]

Because of Us high polarity and low nucleophilicity, a trifluoroacetic acid medium is usually used for the investigation of such carbocationic processes as solvolysis, protonation of alkenes, skeletal rearrangements, and hydride shifts [22-24] It also has been used for several synthetically useful reachons, such as electrophilic aromatic substitution [25], reductions [26, 27], and oxidations [28] Trifluoroacetic acid is a good medium for the nitration of aromatic compounds Nitration of benzene or toluene with sodium nitrate in trifluoroacetic acid is almost quantitative after 4 h at room temperature [25] Under these conditions, toluene gives the usual mixture of mononitrotoluenes in an o m p ratio of 61 6 2 6 35 8 A trifluoroacetic acid medium can be used for the reduction of acids, ketones, and alcohols with sodium borohydnde [26] or triethylsilane [27] Diary Iketones are smoothly reduced by sodium borohydnde in trifluoroacetic acid to diarylmethanes (equation 13)... [Pg.946]

Reduction with sodium iiaphthalide followed by treatment with Mel gave 127 and 128 in an excellent combined yield. Exposure of 73 to AgBp4-EtsSiH resulted in a novel skeletal rearrangement leading to compound 129 (90JA3029). [Pg.246]

Studies reveal an advantage to using boron trifluoride in dichloromethane at reduced temperatures instead of Brpnsted acids in the organosilicon hydride reductions of a number of dialkylbenzyl alcohols.126 129 The use of Brpnsted acids may be unsatisfactory under conditions in which the starting alcohol suffers rapid skeletal rearrangement and elimination upon contact with the acid, and also in which the alcohol does not yield a sufficient concentration of the intermediate carbocation when treated with protic acids.126... [Pg.21]

An example of an alcohol that can undergo rapid skeletal rearrangement is 3,3-dimethyl-2-phenyl-2-butanol (Eq. 29). Attempts to reduce this alcohol in dichloromethane solution with l-naphthyl(phenyl)methylsilane yield only a mixture of the rearranged elimination products 3,3-dimethyl-2-phenyl-l-butene and 2,3-dimethy 1-3-phenyl-1 -butene when trifluoroacetic acid or methanesulfonic acid is used. Use of a 1 1 triflic acid/triflic anhydride mixture with a 50 mol% excess of the silane gives good yields of the unrearranged reduction product 3,3-dimethyl-2-phenylbutane, but also causes extensive decomposition of the silane.126 In contrast, introduction of boron trifluoride gas into a dichloromethane solution of the alcohol and a 10 mol% excess of the silane... [Pg.21]

The structures of the radical anions were confirmed by the following experiment (Scheme 9). The reduction of the ladder polysilanes was monitored by UY-visible-NIR spectroscopy. When the absorption of the ladder polysilanes was completely replaced by the absorption of the radical anions, the sealed tube was opened. The radical anions were immediately oxidized, and the starting ladder polysilanes were recovered in high isolated yields. It is reasonable to conclude that the radical anions of the ladder polysilanes retain the ladder structure, and the Si-Si bond cleavage or skeletal rearrangement does not occur. [Pg.152]

Reduction of p-ketoesters in aqueous ethanolic sulphuric acid leads to removal of both functional groups and the formation of a hydrocarbon. This reaction which was discovered in 1907 [117] and recognised in 1912 [118] as involving a skeletal rearrangement is now termed the Tafel rearrangement. Conversions of the type 26 into 27 occur in 30 - 60 % yields [118,119] and the hydrocarbon is easily separated... [Pg.351]

The last synthesis to evolve which is due to Ito and his coworkers is interesting in that it relies on a stereospecific skeletal rearrangement of a bicyclo[2.2.2]octane system which in turn was prepared by Diels-Alder methodology (Scheme XLVIII) Heating of a toluene solution of cyclopentene 1,2-dicarboxylic anhydride and 4-methylcyclohexa-l,4-dienyl methyl ether in the presence of a catalytic quantity of p-toluenesulfonic acid afforded 589. Demethylation was followed by reduction and cyclization to sulfide 590. Desulfurization set the stage for peracid oxidation and arrival at 591. Chromatography of this intermediate on alumina induced isomerization to keto alcohol 592. Jones oxidation afforded diketone 593 which had earlier been transformed into gymnomitrol. [Pg.45]

Rhodium(II) acetate catalyzes C—H insertion, olefin addition, heteroatom-H insertion, and ylide formation of a-diazocarbonyls via a rhodium carbenoid species (144—147). Intramolecular cyclopentane formation via C—H insertion occurs with retention of stereochemistry (143). Chiral rhodium (TT) carboxamides catalyze enantioselective cyclopropanation and intramolecular C—N insertions of CC-diazoketones (148). Other reactions catalyzed by rhodium complexes include double-bond migration (140), hydrogenation of aromatic aldehydes and ketones to hydrocarbons (150), homologation of esters (151), carbonylation of formaldehyde (152) and amines (140), reductive carbonylation of dimethyl ether or methyl acetate to 1,1-diacetoxy ethane (153), decarbonylation of aldehydes (140), water gas shift reaction (69,154), C—C skeletal rearrangements (132,140), oxidation of olefins to ketones (155) and aldehydes (156), and oxidation of substituted anthracenes to anthraquinones (157). Rhodium-catalyzed hydrosilation of olefins, alkynes, carbonyls, alcohols, and imines is facile and may also be accomplished enantioselectively (140). Rhodium complexes are moderately active alkene and alkyne polymerization catalysts (140). In some cases polymer-supported versions of homogeneous rhodium catalysts have improved activity, compared to their homogenous counterparts. This is the case for the conversion of alkenes direcdy to alcohols under oxo conditions by rhodium—amine polymer catalysts... [Pg.181]

Kinetically controlled hydride transfer between the hydrocarbon hydride source and the substrate often involves skeletal rearrangements. This has also been demonstrated in the reduction of androsta-4,6-diene-3,17-dione 230.882... [Pg.732]

The key intermediate in the total synthesis of furaquinocin was obtained in good yield by a reductive Heck reaction that proceeded with a sterically hindered base pentamethylpiperidine (PMP) <02JA11616>. A new hypothesis for the major skeletal rearrangement (anthraquinone —> xanthone —> coumarin) that occurs in the complex biosynthesis of aflatoxin Bi was proposed. To test this hypothesis, an intermediate 11-hydroxy-O-methylstergmatocystin (HOMST) was synthesized as shown below. The key transformation in this synthesis involved the treatment of an ester-aldehyde with Pr3SiOTf, which smoothly produced a mixed acetal. Direct reduction with DIBAL-H led to the aldehyde. The desired product was eventually obtained via several steps as shown <02JA5294>. [Pg.195]

The reduction of alcohols with a trialkylsilane in the presence of a protic acid can be complicated by skeletal rearrangement and alkene formation as a result of carbonium ion formation. This problem is significantly reduced when using BF3 as the acid (Eq. 85) [140]. Peptide isosteres (Eq. 86) can be prepared by the alkylative ehmina-tion of y-oxygenated-a,y3-unsaturated carboxylates by use of BF3 complexes of alkyl-copper reagents [141]. [Pg.112]

Before the introduction of metal-ammonia solutions for the reduction of a,p-unsaturated carbonyl compounds,sodium, sodium amalgam, or zinc in protic media were most commonly employed for this purpose. Some early examples of their use include the conversion of carvone to dihydrocarvone with zinc in acid or alkaline medium, and of cholest-4-en-3-one to cholestanone with sodium in alcohol. These earlier methods are complicated by a variety of side reactions, such as over-reduction, dimerization, skeletal rearrangements, acid- or base-catalyzed isomerizations and aldol condensations, most of which can be significantly minimized by metal-ammonia reduction. [Pg.526]


See other pages where Skeletal rearrangement, reductive is mentioned: [Pg.181]    [Pg.28]    [Pg.468]    [Pg.582]    [Pg.146]    [Pg.352]    [Pg.862]    [Pg.24]    [Pg.946]    [Pg.566]    [Pg.2206]    [Pg.566]    [Pg.134]    [Pg.339]    [Pg.234]    [Pg.129]    [Pg.10]    [Pg.273]    [Pg.704]    [Pg.946]    [Pg.566]    [Pg.825]    [Pg.427]    [Pg.427]    [Pg.582]    [Pg.37]    [Pg.124]    [Pg.582]    [Pg.37]    [Pg.265]    [Pg.179]    [Pg.231]   


SEARCH



Rearrangement reduction

Skeletal rearrangement

© 2024 chempedia.info