Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Skeletal alkenes

Alcohol Substitution. In the early period of normal thiol production, the normal alcohols were utilized as feedstocks. The use of a strong acid catalyst results in the formation of a significant amount of secondary thiol, along with other isomers resulting from skeletal isomerization of the starting material. This process has largely been replaced by uv-initiation because of the higher relative cost of alcohol vs alkene feedstock. [Pg.11]

Because of Us high polarity and low nucleophilicity, a trifluoroacetic acid medium is usually used for the investigation of such carbocationic processes as solvolysis, protonation of alkenes, skeletal rearrangements, and hydride shifts [22-24] It also has been used for several synthetically useful reachons, such as electrophilic aromatic substitution [25], reductions [26, 27], and oxidations [28] Trifluoroacetic acid is a good medium for the nitration of aromatic compounds Nitration of benzene or toluene with sodium nitrate in trifluoroacetic acid is almost quantitative after 4 h at room temperature [25] Under these conditions, toluene gives the usual mixture of mononitrotoluenes in an o m p ratio of 61 6 2 6 35 8 A trifluoroacetic acid medium can be used for the reduction of acids, ketones, and alcohols with sodium borohydnde [26] or triethylsilane [27] Diary Iketones are smoothly reduced by sodium borohydnde in trifluoroacetic acid to diarylmethanes (equation 13)... [Pg.946]

Mercury(II) trifluoroacetate is a good electrophile that is highly reactive toward carbon-carbon double bonds [52, 53, 54] When reacting with olefins in nucleophilic solvents, it usually gives exclusively mercurated solvoadducts, but never products of skeletal rearrangement Solvomercuration-demercuratton of alkenes with mercury(II) trifluoroacetate is a remarkably effective procedure for the preparation of esters and alcohols with Markovnikov s regiochemistry [52, 5J] (equation 24)... [Pg.951]

Carbocations initially formed upon addition of an electrophile to an alkene may be able to undergo skeletal rearrangement depending on whether or not a more stable cation exists and, if it does exist, whether or not it can be reached via a low-energy pathway. Consider addition of HBr to 3-methyl-1-butene, the product of which is 2-methyl-2-butyl bromide. [Pg.110]

Name the following alkenes, and convert each drawing into a skeletal structure ... [Pg.205]

The rearrangement of platinacyclobutanes to alkene complexes or ylide complexes is shown to involve an initial 1,3-hydride shift (a-elimina-tion), which may be preceded by skeletal isomerization. This isomerization can be used as a model for the bond shift mechanism of isomerization of alkanes by platinum metal, while the a-elimination also suggests a possible new mechanism for alkene polymerisation. New platinacyclobutanes with -CH2 0SC>2Me substituents undergo solvolysis with ring expansion to platinacyclopentane derivatives, the first examples of metallacyclobutane to metallacyclopentane ring expansion. The mechanism, which may also involve preliminary skeletal isomerization, has been elucidated by use of isotopic labelling and kinetic studies. [Pg.339]

For (XX), L py, it is likely that the major reaction path involves initial skeletal isomerization to give (XXI) followed by rapid solvolysis of this isomer. The solvolysis of this isomer is strongly metal-assisted since the intermediate carbonium ion is stabilised by the metal-alkene resonance form as shown in the Scheme. The product is the 1-D2 isomer. Now, the skeletal isomerization of (XX) is expected to be retarded by free pyridine and cannot occur when L2 = 2,2 -bipyridyl C7). Hence under these conditions the reaction must occur by solvolysis of (XX) giving largely the 3-D2 isomer. However, the product formed under these conditions is still about 30% of the 1-D2 isomer (Table I). [Pg.347]

The elusive diazoalkenes 6 and 14 are unlikely to react with methanol as their basicity should be comparable to that of diphenyldiazomethane. However, since the formation of diazonium ions cannot be rigorously excluded, the protonation of vinylcarbenes was to be confirmed with non-nitrogenous precursors. Vinyl-carbenes are presumedly involved in photorearrangements of cyclopropenes.21 In an attempt to trap the intermediate(s), 30 was irradiated in methanol. The ethers 32 and 35 (60 40) were obtained,22 pointing to the intervention of the al-lylic cation 34 (Scheme 10). Protonation of the vinylcarbene 31 is a likely route to 34. However, 34 could also arise from protonation of photoexcited 30, by way of the cyclopropyl cation 33. The photosolvolysis of alkenes is a well-known reaction which proceeds according to Markovnikov s rule and is, occasionally, associated with skeletal reorganizations.23 Therefore, cyclopropenes are not the substrates of choice for demonstrating the protonation of vinylcarbenes. [Pg.6]

Enyne metathesis is unique and interesting in synthetic organic chemistry. Since it is difficult to control intermolecular enyne metathesis, this reaction is used as intramolecular enyne metathesis. There are two types of enyne metathesis one is caused by [2+2] cycloaddition of a multiple bond and transition metal carbene complex, and the other is an oxidative cyclization reaction caused by low-valent transition metals. In these cases, the alkyli-dene part migrates from alkene to alkyne carbon. Thus, this reaction is called an alkylidene migration reaction or a skeletal reorganization reaction. Many cyclized products having a diene moiety were obtained using intramolecular enyne metathesis. Very recently, intermolecular enyne metathesis has been developed between alkyne and ethylene as novel diene synthesis. [Pg.142]

A few other interesting and potentially important consequences of the reversible formation of five-membered zirconacycles include stereo- and regioselective skeletal rearrangement, as exemplified by Scheme 1.57 [197], and 1,3-C=C bond and Zr migration (Scheme 1.58) [191,192], supporting the associative mechanism for alkene displacement (Generalization 22 ). [Pg.36]

The well-known addition of tert-butyl chloride to ethylene by means of A1C13 without skeletal rearrangement is simply another example of the initiation step of a /-cat polymerisation, involving the insertion of the alkene into an ester, namely the C-Cl bond, which is activated by the A1C13, via a six-centred transition state (I), as shown in equation (ii) ... [Pg.707]

In the case of alkenes, 1-pentene reactions were studied over a catalyst with FAU framework (Si/Al2 = 5, ultrastable Y zeoHte in H-form USHY) in order to establish the relation between acid strength and selectivity [25]. Both fresh and selectively poisoned catalysts were used for the reactivity studies and later characterized by ammonia temperature programmed desorption (TPD). It was determined that for alkene reactions, cracking and hydride transfer required the strongest acidity. Skeletal isomerization required moderate acidity, whereas double-bond isomerization required weak acidity. Also an apparent correlation was established between the molecular weight of the hard coke and the strength of the acid sites that led to coking. [Pg.421]

Hydride shift is a fast elementary step that enables the positive charge to move around the carbocation ion to ultimately achieve thermodynamically the most favorable configuration. 1,2 hydride shift in the secondary butyl carbenium ion is illustrated in Figure 13.23. The use of this common step during alkene skeletal isomerization is further discussed in Section 13.8.1. [Pg.429]

Beta scission of a carbenium ion is an elementary step that is inihated by the weakening of the bond beta to the positive charge, leading to a smaller carbenium ion and an alkene. This elementary step is further discussed in Sections 13.8.1, 13.8.3.1 and 13.8.4 within the context of alkene skeletal isomerization, isobutane-2-butene alkylation and alkane cracking, respectively. [Pg.430]

Protonated cyclopropane ring closure and ring opening steps are discussed in Section 13.8.1 within the context of alkene skeletal siomerization. Carbonium ion decomposition is further discussed in Section 13.8.4.2 within the context of mono-molecular cracking of alkanes. [Pg.430]

This mechanism is supported by reports of comparable reaction rates obtained during skeletal isomerization with the corresponding alkenes over metal-free zeolites [52]. [Pg.438]

Presumably, these skeletal reorganization reactions start by coordination of a metal ion to an alkyne part in 78 to allow an alkene part to attack the resulting electrophilic alkyne carbon coordinated by the metal. However, the reaction mechanism remains yet to be clarified, and it is thought that each reaction mechanism differs depending on the metal used. [Pg.295]


See other pages where Skeletal alkenes is mentioned: [Pg.159]    [Pg.537]    [Pg.181]    [Pg.1127]    [Pg.51]    [Pg.381]    [Pg.340]    [Pg.342]    [Pg.351]    [Pg.388]    [Pg.299]    [Pg.143]    [Pg.150]    [Pg.161]    [Pg.295]    [Pg.298]    [Pg.44]    [Pg.404]    [Pg.437]    [Pg.437]    [Pg.447]    [Pg.448]    [Pg.454]    [Pg.455]    [Pg.488]    [Pg.162]    [Pg.787]    [Pg.870]    [Pg.367]    [Pg.556]    [Pg.870]   
See also in sourсe #XX -- [ Pg.447 ]




SEARCH



Alkenes skeletal isomerization

© 2024 chempedia.info