Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Single spectroscopy

Application of a combination of techniques. Only rarely will one single spectroscopy be able to solve a problem entirely. The case studies demonstrate the advantages of using different techniques on the same catalysts. [Pg.287]

The presence of surface conductance behind the slip plane alters the relationships between the various electrokinetic phenomena [83, 84] further complications arise in solvent mixtures [85]. Surface conductance can have a profound effect on the streaming current and electrophoretic mobility of polymer latices [86, 87]. In order to obtain an accurate interpretation of the electrostatic properties of a suspension, one must perform more than one type of electrokinetic experiment. One novel approach is to measure electrophoretic mobility and dielectric spectroscopy in a single instrument [88]. [Pg.189]

The importance of the particle levitation methods is that they allow the study of how a single particle responds to changes in environment. The infrared molecular spectroscopy of single particles is possible [253], as are photophysical studies using adsorbed or dissolved dyes. [Pg.526]

In this section we will discuss more conventional spectroscopies absorption, emission and resonance Raman scattering. These spectroscopies are generally measured under single frequency conditions, and therefore our... [Pg.244]

Electrons interact with solid surfaces by elastic and inelastic scattering, and these interactions are employed in electron spectroscopy. For example, electrons that elastically scatter will diffract from a single-crystal lattice. The diffraction pattern can be used as a means of stnictural detenuination, as in FEED. Electrons scatter inelastically by inducing electronic and vibrational excitations in the surface region. These losses fonu the basis of electron energy loss spectroscopy (EELS). An incident electron can also knock out an iimer-shell, or core, electron from an atom in the solid that will, in turn, initiate an Auger process. Electrons can also be used to induce stimulated desorption, as described in section Al.7.5.6. [Pg.305]

STM has also been adapted for perfonning single-atom vibrational spectroscopy [73],... [Pg.311]

Stipe B C, Rezaei M A and Flo W 1998 Single-molecule vibrational spectroscopy and microscopy Science 280 1732... [Pg.319]

While a laser beam can be used for traditional absorption spectroscopy by measuring / and 7q, the strength of laser spectroscopy lies in more specialized experiments which often do not lend themselves to such measurements. Other techniques are connnonly used to detect the absorption of light from the laser beam. A coimnon one is to observe fluorescence excited by the laser. The total fluorescence produced is nonnally proportional to the amount of light absorbed. It can be used as a measurement of concentration to detect species present in extremely small amounts. Or a measurement of the fluorescence intensity as the laser frequency is scaimed can give an absorption spectrum. This may allow much higher resolution than is easily obtained with a traditional absorption spectrometer. In other experiments the fluorescence may be dispersed and its spectrum detennined with a traditional spectrometer. In suitable cases this could be the emission from a single electronic-vibrational-rotational level of a molecule and the experimenter can study how the spectrum varies with level. [Pg.1123]

All the previous discussion in this chapter has been concerned with absorption or emission of a single photon. However, it is possible for an atom or molecule to absorb two or more photons simultaneously from a light beam to produce an excited state whose energy is the sum of the energies of the photons absorbed. This can happen even when there is no intemrediate stationary state of the system at the energy of one of the photons. The possibility was first demonstrated theoretically by Maria Goppert-Mayer in 1931 [29], but experimental observations had to await the development of the laser. Multiphoton spectroscopy is now a iisefiil technique [30, 31]. [Pg.1146]

Many of the most interesting current developments in electronic spectroscopy are addressed in special chapters of their own in this encyclopedia. The reader is referred especially to sections B2.1 on ultrafast spectroscopy. Cl.5 on single molecule spectroscopy, C3.2 on electron transfer, and C3.3 on energy transfer. Additional topics on electronic spectroscopy will also be found in many other chapters. [Pg.1147]

Vibrational spectroscopy has been, and will continue to be, one of the most important teclmiques in physical chemistry. In fact, the vibrational absorption of a single acetylene molecule on a Cu(lOO) surface was recently reported [ ]. Its endurance is due to the fact that it provides detailed infonnation on structure, dynamics and enviromnent. It is employed in a wide variety of circumstances, from routine analytical applications, to identifying novel (often transient) species, to providing some of the most important data for advancing the understanding of intramolecular and intemiolecular interactions. [Pg.1175]

Provencal R A ef a/1999 Infrared cavity ringdown spectroscopy of methanol clusters single donor hydrogen bonding J. Chem. Phys. 110 4258-67... [Pg.1176]

Unlike the typical laser source, the zero-point blackbody field is spectrally white , providing all colours, CO2, that seek out all co - CO2 = coj resonances available in a given sample. Thus all possible Raman lines can be seen with a single incident source at tOp Such multiplex capability is now found in the Class II spectroscopies where broadband excitation is obtained either by using modeless lasers, or a femtosecond pulse, which on first principles must be spectrally broad [32]. Another distinction between a coherent laser source and the blackbody radiation is that the zero-point field is spatially isotropic. By perfonuing the simple wavevector algebra for SR, we find that the scattered radiation is isotropic as well. This concept of spatial incoherence will be used to explain a certain stimulated Raman scattering event in a subsequent section. [Pg.1197]

Continuous wave (CW) lasers such as Ar and He-Ne are employed in conmionplace Raman spectrometers. However laser sources for Raman spectroscopy now extend from the edge of the vacuum UV to the near infrared. Lasers serve as an energetic source which at the same hme can be highly monochromatic, thus effectively supplying the single excitation frequency, v. The beams have a small diameter which may be... [Pg.1199]

Nie S and Emory S R 1997 Near-field surface-enhanced Raman spectroscopy on single silver nanoparticles Anal. Chem. 69 2631-5... [Pg.1228]

Kneipp K, Wang Y, Kneipp H, Itzkan I, Dasari R R and Feld M S 1996 Approach to single molecule detection using surface-enhanced Raman scattering ICORS 98 XVth Int. Conf on Raman Spectroscopy ed S A Asher and P B Stein (New York Wley) pp 636-7... [Pg.1228]

Trautman J K, Macklin J J, Brus L E and Betzig E 1994 Near-field spectroscopy of single molecules at room temperature Nature 369 40... [Pg.1730]

One interesting new field in the area of optical spectroscopy is near-field scaiming optical microscopy, a teclmique that allows for the imaging of surfaces down to sub-micron resolution and for the detection and characterization of single molecules [, M]- Wlien applied to the study of surfaces, this approach is capable of identifying individual adsorbates, as in the case of oxazine molecules dispersed on a polymer film, illustrated in figure Bl.22,11 [82], Absorption and emission spectra of individual molecules can be obtamed with this teclmique as well, and time-dependent measurements can be used to follow the dynamics of surface processes. [Pg.1794]

Empedocles S A, Norris D J and Bawendi M G 1996 Photoluminescence spectroscopy of single CdSe nanocrystallite quantum dots Phys. Rev. Lett. 77 3873-6... [Pg.1799]

Moerner W E 1996 Fligh-resolution optical spectroscopy of single molecules in solids Acc. Chem. Res. 29 563-71... [Pg.1799]

Xie X S 1996 Single-molecule spectroscopy and dynamics at room temperature Acc. Chem. Res. 29 598-606... [Pg.1799]

In a coupled spin system, the number of observed lines in a spectrum does not match the number of independent z magnetizations and, fiirthennore, the spectra depend on the flip angle of the pulse used to observe them. Because of the complicated spectroscopy of homonuclear coupled spins, it is only recently that selective inversions in simple coupled spin systems [23] have been studied. This means that slow chemical exchange can be studied using proton spectra without the requirement of single characteristic peaks, such as methyl groups. [Pg.2110]


See other pages where Single spectroscopy is mentioned: [Pg.331]    [Pg.331]    [Pg.344]    [Pg.2]    [Pg.253]    [Pg.268]    [Pg.308]    [Pg.805]    [Pg.1121]    [Pg.1142]    [Pg.1168]    [Pg.1190]    [Pg.1197]    [Pg.1214]    [Pg.1265]    [Pg.1294]    [Pg.1478]    [Pg.1716]    [Pg.1780]    [Pg.1781]    [Pg.1968]    [Pg.1976]    [Pg.1990]    [Pg.2142]    [Pg.2145]    [Pg.2395]   
See also in sourсe #XX -- [ Pg.318 , Pg.329 ]




SEARCH



© 2024 chempedia.info