Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Simulation methods theory

Handy, N.C. Density functional theory. In Quantum mechanical simulation methods for studying biological systems, D. Bicout and M. Field, eds. Springer, Berlin (1996) 1-35. [Pg.32]

Catlow C R A and W C Mackrodt 1982. Theory of Simulation Methods for Lattice and Defect Energy Calculations in Crystals. In Lecture Notes in Physics 166 (Comput. Simul. Solids), pp. 3-20. [Pg.648]

Choose a site on the lattiee. That ean be done either in a systematie or a random way, but the latter method requires more eomputing time. Draw the value of the adsorption energy, from the speeified interval, aeeording to the assumed form of x( ) and assign this value to the ehosen site. (The proeedures to generate random sequenees of numbers aeeording to a given probability distribution ean be found in many textbooks on probability theory [67] and eomputer simulation methods [52].)... [Pg.253]

In addition to various analytic or semi-analytic methods, which are based on the theory of the liquid state and which are not the subject of this chapter, almost the entire toolbox of molecular computer simulation methods has been applied to the theoretical study of aqueous interfaces. They have usually been adapted and modified from schemes developed in a different context. [Pg.349]

We close these introductory remarks with a few comments on the methods which are actually used to study these models. They will for the most part be mentioned only very briefly. In the rest of this chapter, we shall focus mainly on computer simulations. Even those will not be explained in detail, for the simple reason that the models are too different and the simulation methods too many. Rather, we refer the reader to the available textbooks on simulation methods, e.g.. Ref. 32-35, and discuss only a few technical aspects here. In the case of atomistically realistic models, simulations are indeed the only possible way to approach these systems. Idealized microscopic models have usually been explored extensively by mean field methods. Even those can become quite involved for complex models, especially for chain models. One particularly popular and successful method to deal with chain molecules has been the self-consistent field theory. In a nutshell, it treats chains as random walks in a position-dependent chemical potential, which depends in turn on the conformational distributions of the chains in... [Pg.639]

For example, the ZN theory, which overcomes all the defects of the Landau-Zener-Stueckelberg theory, can be incorporated into various simulation methods in order to clarify the mechanisms of dynamics in realistic molecular systems. Since the nonadiabatic coupling is a vector and thus we can always determine the relevant one-dimensional (ID) direction of the transition in multidimensional space, the 1D ZN theory can be usefully utilized. Furthermore, the comprehension of reaction mechanisms can be deepened, since the formulas are given in simple analytical expressions. Since it is not feasible to treat realistic large systems fully quantum mechanically, it would be appropriate to incorporate the ZN theory into some kind of semiclassical methods. The promising semiclassical methods are (1) the initial value... [Pg.96]

Harder E, Kim BC, Friesner RA, Berne BJ (2005) Efficient simulation method for polarizable protein force fields application to the simulation of BPTI in liquid. J Chem Theory Comput 1(1) 169-180... [Pg.255]

In this type of apparatus, the two phases do not come to equilibrium, at any point in the contactor and the simulation method is based, therefore, not on a number of equilibrium stages, but rather on a consideration of the relative rates of transport of material through the contactor by flow and the rate of interfacial mass transfer between the phases. For this, a consideration of mass transfer rate theory becomes necessary. [Pg.45]

These results agree well with what was said above about the A + B 0 reaction (see Fig. 7.5) - the larger reactant diffusities and/or smaller irradiation intensity, the smaller saturation concentrations ns. The Monte Carlo simulations [95] very well confirm these results. These simulations were performed on a lattice of 105 sites, by the direct simulation method. The interparticle probability density was also measured in the simulations, and the results are compared with theory the agreement is excellent. [Pg.437]

The lowest-lying potential energy surfaces for the 0(3P) + CH2=C=CH2 reaction were theoretically characterized using CBS-QB3, RRKM statistical rate theory, and weak-collision master equation analysis using the exact stochastic simulation method. The results predicted that the electrophilic O-addition pathways on the central and terminal carbon atom are dominant up to combustion temperatures. Major predicted end-products are in agreement with experimental evidence. New H-abstraction pathways, resulting in OH and propargyl radicals, have been identified.254... [Pg.121]

Ray Kapral came to Toronto from the United States in 1969. His research interests center on theories of rate processes both in systems close to equilibrium, where the goal is the development of a microscopic theory of condensed phase reaction rates,89 and in systems far from chemical equilibrium, where descriptions of the complex spatial and temporal reactive dynamics that these systems exhibit have been developed.90 He and his collaborators have carried out research on the dynamics of phase transitions and critical phenomena, the dynamics of colloidal suspensions, the kinetic theory of chemical reactions in liquids, nonequilibrium statistical mechanics of liquids and mode coupling theory, mechanisms for the onset of chaos in nonlinear dynamical systems, the stochastic theory of chemical rate processes, studies of pattern formation in chemically reacting systems, and the development of molecular dynamics simulation methods for activated chemical rate processes. His recent research activities center on the theory of quantum and classical rate processes in the condensed phase91 and in clusters, and studies of chemical waves and patterns in reacting systems at both the macroscopic and mesoscopic levels. [Pg.248]

RISM theory can be regarded as an alternative to the molecular simulation method, while the RISM-SCF/MCSCF method can be considered as an alternative to the QM/MM method. It is important to note that the method is derived from a natural extension of the RISM theory as well as the ab initio theory. In this section, after introducing the method, we will show some representative examples. [Pg.596]

To conclude, it is probably an understatement to say that, even if the Integral Equation Theories provide, for a given potential, results much faster than simulation methods, the advances in this field progress, however, more slowly than these of its sister method. But, where there is a will, there is a way. Our basic understanding of the liquid state is now at least comparable with our understanding of the physics of solids. [Pg.79]

From the discussion of various simulation methods, it is clear that they will continue to play an important role in further development of aggregation theories as they have advanced the state of knowledge over the last 20 years. The major limitation of the precise methods of Molecular and Brownian Dynamics continues to be difficulty associated with treatment of aggregates with complex geometry the same topic that limits the ability to model these systems using von Smoluchowski s approach. Research needs to be conducted on the hydrodynamics of interactions between fractal aggregates of increasing complexity in order to advance the current ability to describe these types of systems. [Pg.548]

As most chemical and virtually all biochemical processes occur in liquid state, solvation of the reaction partners is one of the most prominent topics for the determination of chemical reactivity and reaction mechanisms and for the control of reaction conditions and resulting materials. Besides an exhaustive investigation by various experimental methods [1,2,3], theoretical approaches have gained an increasing importance in the treatment of solvation effects [4,5,6,7,8], The reason for this is not only the need for sufficiently accurate models for a physically correct interpretation of the experimental data (Theory determines, what we observe ), but also the limitation of experimental methods in dealing with ultrafast reaction dynamics in the pico- or even subpicosecond regime. These processes have become more and more the domain of computational simulations and a critical evaluation of the accuracy of simulation methods covering experimentally inaccessible systems is of utmost importance, therefore. [Pg.247]

In this chapter we will mostly focus on the application of molecular dynamics simulation technique to understand solvation process in polymers. The organization of this chapter is as follow. In the first few sections the thermodynamics and statistical mechanics of solvation are introduced. In this regards, Flory s theory of polymer solutions has been compared with the classical solution methods for interpretation of experimental data. Very dilute solution of gases in polymers and the methods of calculation of chemical potentials, and hence calculation of Henry s law constants and sorption isotherms of gases in polymers are discussed in Section 11.6.1. The solution of polymers in solvents, solvent effect on equilibrium and dynamics of polymer-size change in solutions, and the solvation structures are described, with the main emphasis on molecular dynamics simulation method to obtain understanding of solvation of nonpolar polymers in nonpolar solvents and that of polar polymers in polar solvents, in Section 11.6.2. Finally, the dynamics of solvation with a short review of the experimental, theoretical, and simulation methods are explained in Section 11.7. [Pg.280]


See other pages where Simulation methods theory is mentioned: [Pg.11]    [Pg.65]    [Pg.419]    [Pg.168]    [Pg.348]    [Pg.350]    [Pg.351]    [Pg.391]    [Pg.97]    [Pg.383]    [Pg.686]    [Pg.65]    [Pg.158]    [Pg.188]    [Pg.294]    [Pg.87]    [Pg.208]    [Pg.26]    [Pg.75]    [Pg.496]    [Pg.174]    [Pg.496]    [Pg.208]    [Pg.259]    [Pg.101]    [Pg.481]    [Pg.468]    [Pg.516]    [Pg.282]    [Pg.471]    [Pg.126]    [Pg.126]    [Pg.148]    [Pg.279]   


SEARCH



Simulation methods

Simulation theory

Theory method

© 2024 chempedia.info