Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Silyl anions reactions with

Silyl ethers serve as preeursors of nucleophiles and liberate a nucleophilic alkoxide by desilylation with a chloride anion generated from CCI4 under the reaction conditions described before[124]. Rapid intramolecular stereoselective reaction of an alcohol with a vinyloxirane has been observed in dichloro-methane when an alkoxide is generated by desilylation of the silyl ether 340 with TBAF. The cis- and tru/u-pyranopyran systems 341 and 342 can be prepared selectively from the trans- and c/.y-epoxides 340, respectively. The reaction is applicable to the preparation of 1,2-diol systems[209]. The method is useful for the enantioselective synthesis of the AB ring fragment of gambier-toxin[210]. Similarly, tributyltin alkoxides as nucleophiles are used for the preparation of allyl alkyl ethers[211]. [Pg.336]

Reactions of Silyl Anions with Metal Halides... [Pg.13]

An interesting variant of metal-silicon bond formation is the combination of metal halides with silyl anions. Since silyl dianions are not available, only one metal-silicon bond can be formed directly. The silylene complexes are then accessible by subsequent reaction steps [113], An example of this approach is given by the reaction of cis-bistriethylphosphaneplatinumdichloride 25 with diphenylsilylli-thium, which yields, however, only dimeric platinadisilacyclosilanes 26a-c [114]. [Pg.13]

Finally, the reaction of silyl anions with dichlorides of Zr and Hf, which provides the silyl complexes 28 and 29, should be mentioned [116]. [Pg.13]

Preparative Applications of Anionic Silyl Complexes 3.1 Reactions with Organic Dihalides... [Pg.206]

Ultrasound also promotes the reaction of potassium hydride with some silicon hydrides to give silyl anions in excellent yields and... [Pg.222]

The wide diversity of the foregoing reactions with electron-poor acceptors (which include cationic and neutral electrophiles as well as strong and weak one-electron oxidants) points to enol silyl ethers as electron donors in general. Indeed, we will show how the electron-transfer paradigm can be applied to the various reactions of enol silyl ethers listed above in which the donor/acceptor pair leads to a variety of reactive intermediates including cation radicals, anion radicals, radicals, etc. that govern the product distribution. Moreover, the modulation of ion-pair (cation radical and anion radical) dynamics by solvent and added salt allows control of the competing pathways to achieve the desired selectivity (see below). [Pg.200]

The reactions of nitroalkenes (42) with various enols (43b) (vinyl ethers, silyl, and acyl enolates, ketene acetals) have been studied in most detail (110, 111, 125—154). As a mle, these reactions proceed smoothly to give the corresponding nitronates (35f) in yields from high to moderate. As in the reactions with enamines, the formation of compounds (44b) is attributed to the ambident character of the anionic centers in zwitterionic intermediates analogous to those shown in Scheme 3.43. [Pg.465]

In many cases, the yields of these products are high. However, the use of /V-silylated triazoles as nucleophiles or the use of cyclic nitroso acetals (475) substituted at the C-3 atom leads to a noticeable decrease in the yield of the oximes. Therefore, steric hindrance in nitroso acetals and a decrease in nucleophilicity of A-centered nucleophiles result in an increase in the contribution of side reactions. It should be emphasized that C -nucleophiles, such as anions of nitro compounds, are not involved in coupling reactions with cyclic nitroso acetals (475). However, the products, which formally correspond to the C,C-coupling mechanism, can be prepared by the nucleophilic substitution of chlorine in compound (476 d) by a Sa/2 mechanism (Scheme 3.254, product (483c), the yield was 79%). [Pg.691]

After the formation of tautomeric anions A=A. the anion A a rearranges to give the anion B, which reacts with the second nitroso acetal molecule to form a mixture of stereoisomers of silyl derivative 509a. After desilylation of 509a, oxime 510a is isolated. The reaction with the fluoride anion proceeds at low temperature, whereas the use of triethylamine is efficient only at room temperature. The yield of oxime (510a) is virtually independent of the reaction conditions, whereas the diastereomeric ratio varies substantially. [Pg.700]

An interesting pericyclic-anionic-pericyclic domino reaction showing a high stereoselectivity is the cycloaddition-aldol-retro-ene process depicted in scheme 20.1581 The procedure presumably starts with a [4+2]-cycloaddition of diene 98 and S02 in presence of a Lewis acid. After opening of the formed adduct reaction with (Z)-silyl vinyl ether 99 leads to a mixture of alk-2-enesulfinic acids 101. It follows a retro-ene reaction which affords a 7 3 mixture of the products 102 and 103. The reaction described by Vogel et al is a nice example for the efficient generation of polypropionate chains with the stereoselective formation of three stereogenic centers and one (0-double bond in a three-component domino reaction in its strict definition. [Pg.53]

Vinyl cations of type 28 with a-aryl or a-alkyl substituents and two P-silyl groups and with an anion of very low nucleophilicity can be generated at room temperature in non-coordinating solvents from 30 by a Si-H to C-H hydride transfer reaction. For 29 (R = t-butyl), an X-ray structure determination has been reported (43, 52, 53). [Pg.32]

Silylcuprates have been reported to undergo reactions with a number of miscellaneous Michael acceptors [65]. Conjugate addition to 3-carbomethoxy acyl pyri-dinium salts [65a] affords 4-silyl-l,4-dihydropyridines. Oxidation with p-chlorand generates a 4-acyl pyridinium salt that gives the 4-silylnicotinate upon quenching with water, and methyl 4-silyl-2-substituted dihydronicotinates upon quenching with nucleophiles (nucleophilic addition at the 6-position). The stabilized anion formed by conjugate addition to an a, j8-unsaturated sulfone could be trapped intramolecularly by an alkyl chloride [65b]. [Pg.92]

Silyl radicals have been produced by one-electron oxidation of silyl metals [11]. This is found to be the method of choice for the generation of persistent silyl radicals and allowed the preparation of the first isolable silyl radical (see later in this chapter). Reactions (1.5) and (1.6) show two sterically hindered silyl anions with Na+ as the counter-cation, and their oxidation by the nitrosyl cation [12] and the complex GeCh/dioxane [13], respectively. [Pg.4]


See other pages where Silyl anions reactions with is mentioned: [Pg.452]    [Pg.452]    [Pg.794]    [Pg.152]    [Pg.57]    [Pg.95]    [Pg.227]    [Pg.174]    [Pg.95]    [Pg.199]    [Pg.205]    [Pg.206]    [Pg.285]    [Pg.421]    [Pg.52]    [Pg.369]    [Pg.612]    [Pg.6]    [Pg.410]    [Pg.422]    [Pg.423]    [Pg.515]    [Pg.558]    [Pg.567]    [Pg.664]    [Pg.83]    [Pg.215]    [Pg.180]    [Pg.83]    [Pg.97]    [Pg.69]   


SEARCH



Reactions of Silyl Anions with Metal Halides

Reactions with anions

Silyl anion reactions

Silyl anions reaction with imines

Silyl reactions with

Silylation reactions

Silyls reactions with

© 2024 chempedia.info