Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidation state, silicon

An amorphous silicon monoxide could be formed as a structure between metallic silicon (oxidation state zero) and silicon dioxide (oxidation state four). Structures like those shown above seem to be possible. If we summarize all available facts about SiO in the solid state, the following picture is obtained ... [Pg.71]

Figure 12 shows typical variable angle measiuements made in a standard XPS instrmnent (39) using Mg K-o x-rays to excite the Si 2p spectrum. The silicon dioxide layer thickness was approximately 9 A as measured by ellipsometry. Ib curve fit the data, a third intermediate silicon oxidation state (SiO) was included. The amplitude of this and the main Si 2p peaks due to SiOx and the substrate were obtained as a function of sampled depth (variable angle) to obtain the inter ce thickness. Ishizaka and Iwata (39) estimated the interface transition region to be 2 to 3 A thick SiO from these data. [Pg.85]

Monolayers can be transferred onto many different substrates. Most LB depositions have been perfonned onto hydrophilic substrates, where monolayers are transferred when pulling tire substrate out from tire subphase. Transparent hydrophilic substrates such as glass [18,19] or quartz [20] allow spectra to be recorded in transmission mode. Examples of otlier hydrophilic substrates are aluminium [21, 22, 23 and 24], cliromium [9, 25] or tin [26], all in their oxidized state. The substrate most often used today is silicon wafer. Gold does not establish an oxide layer and is tlierefore used chiefly for reflection studies. Also used are silver [27], gallium arsenide [27, 28] or cadmium telluride wafer [28] following special treatment. [Pg.2614]

The oxidation state -1-4 is predominantly covalent and the stability of compounds with this oxidation state generally decreases with increasing atomic size (Figure 8.1). It is the most stable oxidation state for silicon, germanium and tin, but for lead the oxidation state +4 is found to be less stable than oxidation state +2 and hence lead(IV) compounds have oxidising properties (for example, see p. 194). [Pg.162]

The concept of oxidation states is best applied only to germanium, tin and lead, for the chemistry of carbon and silicon is almost wholly defined in terms of covalency with the carbon and silicon atoms sharing all their four outer quantum level electrons. These are often tetrahedrally arranged around the central atom. There are compounds of carbon in which the valency appears to be less than... [Pg.162]

Silicon, germanium, tin and lead can make use of unfilled d orbitals to expand their covalency beyond four and each of these elements is able (but only with a few ligands) to increase its covalency to six. Hence silicon in oxidation state -f-4 forms the octahedral hexafluorosilicate complex ion [SiFg] (but not [SiCl] ). Tin and lead in oxidation state -1-4 form the hexahydroxo complex ions, hexahydroxostannate(IV). [Sn(OH) ] and hexahydroxoplum-bate(IV) respectively when excess alkali is added to an aqueous solution containing hydrated tin(IV) and lead(IV) ions. [Pg.163]

Acid-treated clays were the first catalysts used in catalytic cracking processes, but have been replaced by synthetic amorphous silica-alumina, which is more active and stable. Incorporating zeolites (crystalline alumina-silica) with the silica/alumina catalyst improves selectivity towards aromatics. These catalysts have both Fewis and Bronsted acid sites that promote carbonium ion formation. An important structural feature of zeolites is the presence of holes in the crystal lattice, which are formed by the silica-alumina tetrahedra. Each tetrahedron is made of four oxygen anions with either an aluminum or a silicon cation in the center. Each oxygen anion with a -2 oxidation state is shared between either two silicon, two aluminum, or an aluminum and a silicon cation. [Pg.70]

The four oxygen anions in the tetrahedron are balanced by the -i-4 oxidation state of the silicon cation, while the four oxygen anions connecting the aluminum cation are not balanced. This results in -1 net charge, which should be balanced. Metal cations such as Na", Mg ", or protons (H" ) balance the charge of the alumina tetrahedra. A two-dimensional representation of an H-zeolite tetrahedra is shown ... [Pg.70]

As stated above, a typical zeolite consists of silicon and aluminum atoms that are tetrahedrally joined by four oxygen atoms. Silicon is in a +4 oxidation state therefore, a tetrahedron containing silicon is neutral in charge. In contrast, aluminum is in a +3 oxidation state. This indicates that each tetrahedron containing aluminum has a net charge of -1, which must be balanced by a positive ion. [Pg.86]

Zeolites are crystalline alumina-silicates having a regular pore structure. Their basic building blocks are silica and alumina tetrahedra. Each tetrahedron consists of silicon or aluminum atoms at the center of the tetrahedron with oxygen atoms at the comers. Because silicon and aluminum are in a +4 and +3 oxidation state, respectively, a net charge of -1 must be balanced by a cation to maintain electrical neutrality. [Pg.130]

In the course of this development, knowledge about low valent (in the sense of formal low oxidation states) reactive intermediates has significantly increased [26-30]. On the basis of numerous direct observations of silylenes (silanediyles), e.g., by matrix isolation techniques, the physical data and reactivities of these intermediates are now precisely known [31], The number of kinetic studies and theoretical articles on reactive intermediates of silicon is still continuously growing... [Pg.3]

The coordination sphere of transition-metal complexes can furthermore be utilized for the fixation of silicon ligands in their lowest oxidation states. Even examples of compounds containing a formally zerovalent silicon (E) are now known [41]. [Pg.4]

The assignment of oxidation states has more a formal character in the sense of electron counting rules [145]. In this context it should, however, be justified to use at least the term low valent silicon. [Pg.20]

Compared to the sum of covalent radii, metal-silicon single bonds are significantly shortened. This phenomenon is explained by a partial multiple bonding between the metal and silicon [62]. A comparison of several metal complexes throughout the periodic table shows that the largest effects occur with the heaviest metals. However, conclusions drawn concerning the thermodynamic stability of the respective M —Si bonds should be considered with some reservation [146], since in most cases the compared metals show neither the same coordination geometries nor the same oxidation states. [Pg.21]

The chemistry of silicon in very low oxidation states is one of the most fascinating research areas, which can be located between molecular compounds of silicon and elemental (perhaps amorphous) silicon [190-194]. Most interesting results have recently been obtained by structural investigations of siliddes in Zintl phases. However, compounds of silicon with negative oxidation states and very low coordination numbers of 1, 2, and 3 are so far only known in the composite of a crystal lattice. [Pg.35]

Molecular compounds of silicon in a formally zerovalent oxidation state can be stabilized by appropriate transition-metal fragments. An entry to such polyme-tallated complexes of silicon is given by the chlorosilylene compounds 7, 11 as a starting-point. [Pg.35]

It is probable that during hydrosilylations these Ni(II) complexes are reduced to 7r-olefin Ni(0) species which then undergo an oxidative addition in an identical manner to that already discussed for the chloroplatinic acid case. There is current interest in such oxidations (83), and the platinum analog (Ph3P)2Pt(olefin) has been shown in one case (olefin = C2H4) to be an excellent hydrosilylation catalyst (240). In this system, intermediate low oxidation state Pt species have been isolated their nature is dependent on the electronegativity of the other groups attached to silicon. [Pg.310]

Brand-new results show the existence of heptacoordinated silicon as described in some of the following papers of this chapter, which also contribute to the discussion of mechanistical pathways in the course of nucleophilic substitution reactions at silicon. From these results one may speculate whether compounds with octa- and nonacoordinated silicon may be characterised in the near future. Although it is a problem to assign coordination numbers in -w-bound systems, it is worthwhile to note Jutzi s dccamethylsilicocene with a formal Si-coordination number ten in the oxidation state +2 in this context. With respect to Si(U)-compounds it should be stated that there are further derivatives with the... [Pg.155]

Note that other halogens, phosphorus, boron, and silicon were of unchanged oxidation state and therefore their availability remained very largely constant. No other non-metals are of significance. [Pg.430]

A passivating oxide is formed under sufficiently anodic potentials in HF, too. However, there are decisive differences to the case of alkaline and fluoride-free acidic electrolytes. For the latter electrolyte the steady-state current density prior to passivation is zero and it is below 1 mA cnT2 for alkaline ones, while it ranges from mA cm-2 to A cm-2 in HF. Furthermore, in HF silicon oxide formation does not lead to passivation, because the anodic oxide is readily etched in HF. This gives rise to an anodic I-V curve specific to HF, it shows two current maxima and two minima and an oscillatory regime, as for example shown in Fig. 4.7. [Pg.43]


See other pages where Oxidation state, silicon is mentioned: [Pg.236]    [Pg.141]    [Pg.236]    [Pg.141]    [Pg.162]    [Pg.709]    [Pg.26]    [Pg.288]    [Pg.411]    [Pg.199]    [Pg.489]    [Pg.215]    [Pg.261]    [Pg.375]    [Pg.94]    [Pg.282]    [Pg.489]    [Pg.27]    [Pg.465]    [Pg.23]    [Pg.564]    [Pg.5]    [Pg.281]    [Pg.162]    [Pg.95]    [Pg.170]    [Pg.326]    [Pg.539]    [Pg.234]    [Pg.242]   
See also in sourсe #XX -- [ Pg.438 ]




SEARCH



Oxidation silicones

Oxides silicon oxide

Oxidized silicon

Silicon oxidation

Silicon oxides

© 2024 chempedia.info