Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Silicon illustration

Fig. VIII-2. Scanning tunneling microscopy images illustrating the capabilities of the technique (a) a 10-nm-square scan of a silicon(lll) crystal showing defects and terraces from Ref. 21 (b) the surface of an Ag-Au alloy electrode being electrochemically roughened at 0.2 V and 2 and 42 min after reaching 0.70 V (from Ref. 22) (c) an island of CO molecules on a platinum surface formed by sliding the molecules along the surface with the STM tip (from Ref. 41). Fig. VIII-2. Scanning tunneling microscopy images illustrating the capabilities of the technique (a) a 10-nm-square scan of a silicon(lll) crystal showing defects and terraces from Ref. 21 (b) the surface of an Ag-Au alloy electrode being electrochemically roughened at 0.2 V and 2 and 42 min after reaching 0.70 V (from Ref. 22) (c) an island of CO molecules on a platinum surface formed by sliding the molecules along the surface with the STM tip (from Ref. 41).
A unique but widely studied polymeric LB system are the polyglutamates or hairy rod polymers. These polymers have a hydrophilic rod of helical polyglutamate with hydrophobic alkyl side chains. Their rigidity and amphiphilic-ity imparts order (lyotropic and thermotropic) in LB films and they take on a F-type stmcture such as that illustrated in Fig. XV-16 [182]. These LB films are useful for waveguides, photoresists, and chemical sensors. LB films of these polymers are very thermally stable, as was indicated by the lack of interdiffusion up to 414 K shown by neutron reflectivity of alternating hydrogenated and deuterated layers [183]. AFM measurements have shown that these films take on different stmctures if directly deposited onto silicon or onto LB films of cadmium arachidate [184]. [Pg.561]

The empirical pseiidopotential method can be illustrated by considering a specific semiconductor such as silicon. The crystal structure of Si is diamond. The structure is shown in figure Al.3.4. The lattice vectors and basis for a primitive cell have been defined in the section on crystal structures (ATS.4.1). In Cartesian coordinates, one can write G for the diamond structure as... [Pg.110]

Typical results for a semiconducting liquid are illustrated in figure Al.3.29 where the experunental pair correlation and structure factors for silicon are presented. The radial distribution function shows a sharp first peak followed by oscillations. The structure in the radial distribution fiinction reflects some local ordering. The nature and degree of this order depends on the chemical nature of the liquid state. For example, semiconductor liquids are especially interesting in this sense as they are believed to retain covalent bonding characteristics even in the melt. [Pg.132]

Figure Bl.25.5. (a) XPS spectra at take-off angles of 0° and 60° as measured from the surface nonnal from a silicon crystal with a thin layer of Si02 on top. The relative intensity of the oxide signal increases significantly at higher take-off angles, illustrating that the surface sensitivity of XPS increases, (b) Plot of... Figure Bl.25.5. (a) XPS spectra at take-off angles of 0° and 60° as measured from the surface nonnal from a silicon crystal with a thin layer of Si02 on top. The relative intensity of the oxide signal increases significantly at higher take-off angles, illustrating that the surface sensitivity of XPS increases, (b) Plot of...
The Peterson reaction has two more advantages over the Wittig reaction 1. it is sometimes less vulnerable to sterical hindrance, and 2. groups, which are susceptible to nucleophilic substitution, are not attacked by silylated carbanions. The introduction of a methylene group into a sterically hindered ketone (R.K. Boeckman, Jr., 1973) and the syntheses of olefins with sulfur, selenium, silicon, or tin substituents (D. Seebach, 1973 B.T. Grdbel, 1974, 1977) illustrate useful applications. The reaction is, however, more limited and time consuming than the Wittig reaction, since metallated silicon derivatives are difficult to synthesize and their reactions are rarely stereoselective (T.H. Chan, 1974 ... [Pg.33]

Fig. 35. Process flow for thin-film imaging lithography (a) bilayer process and (b) top surface imaging. The bilayer process shown here employs a positive-tone imaging layer. The TSI process illustrated refles on preferential silicon incorporation in the exposed regions of the imaging layer to give a... Fig. 35. Process flow for thin-film imaging lithography (a) bilayer process and (b) top surface imaging. The bilayer process shown here employs a positive-tone imaging layer. The TSI process illustrated refles on preferential silicon incorporation in the exposed regions of the imaging layer to give a...
The thyristor is a semiconductor device made of germanium or silicon wafers and comprises three or more Junctions, which can be switched from the OFF state to the ON state or vice versa. Basically it is a ptipn junction, as shown in Figure 6.20(a) and can be considered as composed of two transistors with npn and pnpjunctions, as illustrated in Figure 6.20(b). It does not turn ON when it is forward biased, unlike a diode, unless there is a gate firing pulse. Thyristors are forced commutated (a technique... [Pg.114]

Figure 3.5 shows the positive SSIMS spectrum from a silicon wafer, illustrating both the allocation of peaks and potential isobaric problems. SSIMS reveals many impurities on the surface, particularly hydrocarbons, for which it is especially sensitive. The spectrum also demonstrates reduction of isobaric interference by high-mass resolution. For reasons discussed in Sect. 3.1.3, the peak heights cannot be taken to be directly proportional to the concentrations on the surface, and standards must be used to quantify trace elements. [Pg.94]

The phenomena of beam broadening as a function of specimen thickness are illustrated in Fig. 4.20 each figure represents 200 electron trajectories in silicon calculated by Monte Carlo simulations [4.91, 4.95-4.97] for 100-keV primary energy, where an infinitesimally small electron probe is assumed to enter the surface. In massive Si the electrons suffer a large number of elastic and inelastic interactions during their paths through the material, until they are finally completely stopped. The resulting penetration depth of the electrons is approximately 50 pm and in the... [Pg.196]

This chapter first reviews the general structures and properties of silicone polymers. It goes on to describe the crosslinking chemistry and the properties of the crosslinked networks. The promotion of both adhesive and cohesive strength is then discussed. The build up of adhesion and the loss of adhesive strength are explained in the light of the fundamental theories of adhesion. The final section of the chapter illustrates the use of silicones in various adhesion applications and leads to the design of specific adhesive and sealant products. [Pg.678]

The theories proposed for the mechanisms of adhesion have been reviewed in detail elsewhere [44,45,55-58]. However, for the purpose of this chapter, we are presenting them in the context of silicone adhesion. The various theories underlying each mechanism will be briefly outlined and qualitatively illustrated with specific examples. [Pg.694]

A WBL can also be formed within the silicone phase but near the surface and caused by insufficiently crosslinked adhesive. This may result from an interference of the cure chemistry by species on the surface of substrate. An example where incompatibility between the substrate and the cure system can exist is the moisture cure condensation system. Acetic acid is released during the cure, and for substrates like concrete, the acid may form water-soluble salts at the interface. These salts create a weak boundary layer that will induce failure on exposure to rain. The CDT of polyolefins illustrates the direct effect of surface pretreatment and subsequent formation of a WBL by degradation of the polymer surface [72,73]. [Pg.698]

Before the silica film can form, some corrosion of the metal must necessarily take place, and it follows that initial corrosion rates are high. Fig. 3.62 illustrates this point and suggests that uniform rates of corrosion are not reached until at least 100 h after the onset of the attack. As a result, useful data on the corrosion of high silicon irons can be obtained only from tests of at least this duration. [Pg.626]

And Maher goes on explicitly to underline the conclusions about confirmatory weight that he sees as illustrated by this episode. He claims that Mendeleev s prediction of the existence of the third of the new elements, eka-silicon (aka germanium), was initially regarded as quite unlikely to be true but then later, with the discovery of the first two new elements (gallium and scandium), confidence in the prediction of the existence of the third new element became so high that its eventual empirical confirmation was widely regarded as a matter of course. Maher writes ... [Pg.47]

Table 8-2 contains unpublished results fron the authors laboratory that illustrate the effectiveness of pulse-height selection in the determination of light elements. In the case of silicon, the background was due mainly to scattered x-rays. In the case of sulfur, multiplier phototube noise was also present. The counting interval was 10 seconds for Nt (total count) and for Nb (background). The excellent results for sulfur could not have been obtained had there not been careful and fortunate selection of the multiplier phototube. [Pg.219]


See other pages where Silicon illustration is mentioned: [Pg.39]    [Pg.544]    [Pg.338]    [Pg.439]    [Pg.39]    [Pg.544]    [Pg.338]    [Pg.439]    [Pg.297]    [Pg.444]    [Pg.558]    [Pg.99]    [Pg.123]    [Pg.1884]    [Pg.2220]    [Pg.150]    [Pg.66]    [Pg.369]    [Pg.468]    [Pg.288]    [Pg.496]    [Pg.69]    [Pg.214]    [Pg.118]    [Pg.405]    [Pg.542]    [Pg.694]    [Pg.700]    [Pg.995]    [Pg.110]    [Pg.171]    [Pg.8]    [Pg.361]    [Pg.367]    [Pg.950]    [Pg.1016]    [Pg.1041]    [Pg.565]    [Pg.221]   
See also in sourсe #XX -- [ Pg.40 , Pg.43 ]




SEARCH



Silicon nitride illustration

© 2024 chempedia.info