Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Silicon earth

After oxygen, silicon is the most abundant element in the earth s crust, It occurs extensively as the oxide, silica, in various forms, for example, flint, quartz, sand, and as silicates in rocks and clays, but not as the free element, silicon. Silicon is prepared by reduction of silica, Si02- Powdered amorphous silicon can be obtained by heating dry powdered silica with either powdered magnesium or a... [Pg.165]

Silicon makes up 25.7% of the earth s crust, by weight, and is the second most abundant element, being exceeded only by oxygen. Silicon is not found free in nature, but occurs chiefly as the oxide and as silicates. Sand, quartz, rock crystal, amethyst, agate, flint, jasper, and opal are some of the forms in which the oxide appears. Granite, hornblende, asbestos, feldspar, clay, mica, etc. are but a few of the numerous silicate minerals. [Pg.33]

It is easy to reduce anhydrous rare-earth hatides to the metal by reaction of mote electropositive metals such as calcium, lithium, sodium, potassium, and aluminum. Electrolytic reduction is an alternative in the production of the light lanthanide metals, including didymium, a Nd—Pt mixture. The rare-earth metals have a great affinity for oxygen, sulfur, nitrogen, carbon, silicon, boron, phosphoms, and hydrogen at elevated temperature and remove these elements from most other metals. [Pg.541]

Occurrence and Recovery. Rhenium is one of the least abundant of the naturally occurring elements. Various estimates of its abundance in Earth s cmst have been made. The most widely quoted figure is 0.027 atoms pet 10 atoms of silicon (0.05 ppm by wt) (3). However, this number, based on analyses for the most common rocks, ie, granites and basalts, has a high uncertainty. The abundance of rhenium in stony meteorites has been found to be approximately the same value. An average abundance in siderites is 0.5 ppm. In lunar materials, Re, when compared to Re, appears to be enriched by 1.4% to as much as 29%, relative to the terrestrial abundance. This may result from a nuclear reaction sequence beginning with neutron capture by tungsten-186, followed by p-decay of of a half-hfe of 24 h (4) (see Extraterrestrial materials). [Pg.160]

Silicon [7440-21-3] Si, from the Latin silex, silicis for flint, is the fourteenth element of the Periodic Table, has atomic wt 28.083, and a room temperature density of 2.3 gm /cm. SiUcon is britde, has a gray, metallic luster, and melts at 1412°C. In 1787 Lavoisier suggested that siUca (qv), of which flint is one form, was the oxide of an unknown element. Gay-Lussac and Thenard apparently produced elemental siUcon in 1811 by reducing siUcon tetrafluoride with potassium but did not recognize it as an element. In 1817 BerzeHus reported evidence of siUcon occurring as a precipitate in cast iron. Elemental siUcon does not occur in nature. As a constituent of various minerals, eg, siUca and siUcates such as the feldspars and kaolins, however, siUcon comprises about 28% of the earth s cmst. There are three stable isotopes that occur naturally and several that can be prepared artificially and are radioactive (Table 1) (1). [Pg.524]

Silicon, a low density chemical element having nonmetallic chaiacteristics, is the second, after oxygen (50.5%), most abundant element in the lithosphere. Silicon occurs naturally in the form of oxides and silicates and constitutes over 25% of the earth s cmst (see Silica). [Pg.535]

They are, potentially or actually, cheap. Most ceramics are compounds of oxygen, carbon or nitrogen with metals like aluminium or silicon all five are among the most plentiful and widespread elements in the Earth s crust. The processing costs may be high, but the ingredients are almost as cheap as dirt dirt, after all, is a ceramic. [Pg.162]

Diatomaceous earth A fine, siliceous (made of silica) "earth" composed mainly of the skeletal remains of diatoms (single cell microscopic algae with rigid internal structure consisting mainly of silica). Tests prove that DE leaches unacceptable amounts of silicate into the water for fish health. If used as a filter substance, a silicone removing resin should be employed afterwards. [Pg.611]

One of the chief uses of chloromethane is as a starting material from which silicone polymers are made. Dichloromethane is widely used as a paint stripper. Trichloromethane was once used as an inhalation anesthetic, but its toxicity caused it to be replaced by safer materials many years ago. Tetrachloromethane is the starting material for the preparation of several chlorofluorocarbons (CFCs), at one time widely used as refrigerant gases. Most of the world s industrialized nations have agreed to phase out all uses of CFCs because these compounds have been implicated in atmospheric processes that degrade the Earth s ozone layer. [Pg.167]

The nuclei of iron are especially stable, giving it a comparatively high cosmic abundance (Chap. 1, p. 11), and it is thought to be the main constituent of the earth s core (which has a radius of approximately 3500 km, i.e. 2150 miles) as well as being the major component of siderite meteorites. About 0.5% of the lunar soil is now known to be metallic iron and, since on average this soil is 10 m deep, there must be 10 tonnes of iron on the moon s surface. In the earth s crustal rocks (6.2%, i.e. 62000ppm) it is the fourth most abundant element (after oxygen, silicon and aluminium) and the second most abundant metal. It is also widely distributed. [Pg.1071]

Kiesel-chlorid, n. silicon (tetra)chloride. -effekt, m. Leather, etc.) pebble effect, -erde, /. silica flinty earth, -erdegel, n. silica gel. [Pg.243]

Schwarzeisen, n. higb-silicon pig iron, scbwarzea, v.t. blacken, black darken. Scbwarz-erde, /. black earth, black soil, -er ... [Pg.399]

A photovoltaic cell (often called a solar cell) consists of layers of semiconductor materials with different electronic properties. In most of today s solar cells the semiconductor is silicon, an abundant element in the earth s crust. By doping (i.e., chemically introducing impurity elements) most of the silicon with boron to give it a positive or p-type electrical character, and doping a thin layer on the front of the cell with phosphorus to give it a negative or n-type character, a transition region between the two types... [Pg.1058]

Except for argon, the third-row elements make up an important fraction (about 30%) of the earth s crust. Silicon and aluminum are the second and third most abundant elements (oxygen is the most abundant). Both the occurrence and the mode of preparation of each element can be understood in terms of trends in chemistry discussed earlier in this chapter. [Pg.373]

Silicon is the second most abundant element in the earth s crust. It occurs in sand as the dioxide Si02 and as complex silicate derivatives arising from combinations of the acidic oxide Si02 with various basic oxides such as CaO, MgO, and K20. The clays, micas, and granite, which make up most soils and rocks, are silicates. All have low solubility in water and they are difficult to dissolve, even in strong acids. Silicon is not found in the elemental state in nature. [Pg.373]

Oxygen and silicon are the most abundant elements in the earth s crust. Table 25-111 shows that 60% of the atoms are oxygen atoms and 20% are silicon atoms. If our sample included the oceans, hydrogen would move into the third place ahead of aluminum (remember that water contains two hydrogen atoms for every oxygen atom). If the sample included the central core... [Pg.441]

Heating with the following solids, their fusions, or vapours (a) oxides, peroxides, hydroxides, nitrates, nitrites, sulphides, cyanides, hexacyano-ferrate(III), and hexacyanoferrate(II) of the alkali and alkaline-earth metals (except oxides and hydroxides of calcium and strontium) (b) molten lead, silver, copper, zinc, bismuth, tin, or gold, or mixtures which form these metals upon reduction (c) phosphorus, arsenic, antimony, or silicon, or mixtures which form these elements upon reduction, particularly phosphates, arsenates,... [Pg.95]

Chemistry is the science of matter and the changes it can undergo. The world of chemistry therefore embraces everything material around us—the stones we stand on, the food we eat, the flesh we are made of, and the silicon we build into computers. There is nothing material beyond the reach of chemistry, be it living or dead, vegetable or mineral, on Earth or in a distant star. [Pg.25]

Aluminum is the most abundant metallic element in the Earth s crust and, after oxygen and silicon, the third most abundant element (see Fig. 14.1). However, the aluminum content in most minerals is low, and the commercial source of aluminum, bauxite, is a hydrated, impure oxide, Al203-xH20, where x can range from 1 to 3. Bauxite ore, which is red from the iron oxides that it contains (Fig. 14.23), is processed to obtain alumina, A1203, in the Bayer process. In this process, the ore is first treated with aqueous sodium hydroxide, which dissolves the amphoteric alumina as the aluminate ion, Al(OH)4 (aq). Carbon dioxide is then bubbled through the solution to remove OH ions as HCO and to convert some of the aluminate ions into aluminum hydroxide, which precipitates. The aluminum hydroxide is removed and dehydrated to the oxide by heating to 1200°C. [Pg.718]

Silicon is the second most abundant element in the Earth s crust. It occurs widely in rocks as silicates, compounds containing the silicate ion, Si032, and as the silica, Si02, of sand (Fig. 14.33). Pure silicon is obtained from quartzite, a granular form of quartz (another solid phase of SiOz), bv reduction with high-purity carbon in an electric arc furnace ... [Pg.727]

The feldspars are aluminosilicates in which as much as half the silicon(IV) has been replaced by aluminum(III). They are the most abundant silicate materials on Earth and are a major component of granite, a compressed mixture of... [Pg.733]

As a result of its unique chemical and physical properties, silica gel is probably the most important single substance involved in liquid chromatography today. Without silica gel, it is doubtful whether HPLC could have evolved at all. Silica gel is an amorphous, highly porous, partially hydrated form of silica which is a substance made from the two most abundant elements in the earth s crust, silicon and oxygen. Silica, from which silica gel is manufactured, occurs naturally, either in conjunction with metal oxides in the form of silicates, such as clay or shale, or as free silica in the form of quartz, cristobalite or tridymite crystals. Quartz is sometimes found clear and colorless, but more often in an opaque form, frequently colored... [Pg.55]

As can be seen in Fig. 2-1 (abundance of elements), hydrogen and oxygen (along with carbon, magnesium, silicon, sulfur, and iron) are particularly abundant in the solar system, probably because the common isotopic forms of the latter six elements have nuclear masses that are multiples of the helium (He) nucleus. Oxygen is present in the Earth s crust in an abundance that exceeds the amount required to form oxides of silicon, sulfur, and iron in the crust the excess oxygen occurs mostly as the volatiles CO2 and H2O. The CO2 now resides primarily in carbonate rocks whereas the H2O is almost all in the oceans. [Pg.112]


See other pages where Silicon earth is mentioned: [Pg.583]    [Pg.583]    [Pg.358]    [Pg.358]    [Pg.2777]    [Pg.62]    [Pg.841]    [Pg.400]    [Pg.2]    [Pg.210]    [Pg.469]    [Pg.539]    [Pg.58]    [Pg.18]    [Pg.19]    [Pg.25]    [Pg.30]    [Pg.405]    [Pg.6]    [Pg.329]    [Pg.243]    [Pg.1027]    [Pg.741]    [Pg.34]    [Pg.309]    [Pg.441]    [Pg.701]    [Pg.1011]    [Pg.1028]   
See also in sourсe #XX -- [ Pg.38 , Pg.558 ]




SEARCH



Rare earth sulfates and silicon

Silicon bulk Earth composition

Silicon in the Earth

© 2024 chempedia.info