Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Silicate metals from

Other heavy fuel contaminants are metals (vanadium, nickel, sodium) coming from the crude oil itself or metallic salts (aluminum silicates) coming from catalysts in conversion steps. The aluminum silicates should not exceed 300 ppm (30 ppm of aluminum), for these materials exert a strong abrasive action on the engine cylinders and injection systems. They can however be eliminated partially by centrifuging and filtration. [Pg.240]

Corrective Action Application In Massachusetts, a municipal wastewater treatment plant receives a number of wastestreams containing heavy metals from local industries. When tested, the dewatered sludge failed the EP toxicity test. In order to permit landfill disposal of the sludge, solidification processes were examined. A soluble, silicate-based system, developed by Chemfix, was ultimately selected which produced a product whose leachate passed the EP toxicity test (Sullivan, 1984). [Pg.182]

The principal minerals of Be arc listed in Table 1, the most abundant being beryl, the only one of commercial significance. Phcnacitc, chrysoberyl, bertrandite and barylitc arc constituents of recently discovered Be-containing deposits future extraction of Be from these ores is currently being considered. The other minerals are not found in sufficient quantities to constitute possible commercial sources of Be. The majority of the ores, including beryl, are complex silicate materials from which it is difficult to extract the metal consequently. Be extractive metallurgy is both complex and expensive. [Pg.359]

Clay may promote hydrolysis of the metal at low pFI, but also inhibit hydrolysis at high pH (McBride, 1991). At a higher pH, clay prevents complete hydrolysis of the metal due to the affinity of the charged polymeric metal ions for the silicate surface. This keeps the metal from becoming a separate hydroxide phase. [Pg.145]

The silicates are the most widespread minerals. However, extraction of metals from silicates is very difficult. [Pg.425]

Catalytic cracking Heater stack gas (CO, SOx, NOx, hydrocarbons, and particulates), fugitive emissions (hydrocarbons), and catalyst regeneration (CO, NOx, SOx, and particulates) Spent catalysts (metals from cmde oil and hydrocarbons), spent catalyst fines from electrostatic precipitators (alnminum silicate and metals)... [Pg.88]

As with the calcareous tests, BSi dissolution rates depend on (1) the susceptibility of a particular shell type to dissolution and (2) the degree to which a water mass is undersaturated with respect to opaline silica. Susceptibility to dissolution is related to chemical and physical factors. For example, various trace metals lower the solubility of BSi. (See Table 11.6 for the trace metal composition of siliceous shells.) From the physical perspective, denser shells sink fester. They also tend to have thicker walls and lower surface-area-to-volume ratios, all of which contribute to slower dissolution rates. As with calcivun carbonate, the degree of saturation of seawater with respect to BSi decreases with depth. The greater the thermodynamic driving force for dissolution, the fester the dissolution rate. As shown in Table 16.1, vertical and horizontal segregation of DSi does not significantly coimter the effect of pressure in increasing the saturation concentration DSi. Thus, unlike calcite, there is no deep water that is more thermodynamically favorable for BSi preservation they are all corrosive to BSi. [Pg.410]

Layered clay silicates, generally from the intermediate-grained montmorillonite kaolin clay, are often used as filler in plastics and in the production of pottery and other ceramic items. These silicates consist of the silicate sheets held together mostly by the sodium cation with lesser amounts of other metal ions, such as iron, copper, nickel, etc. There are several approaches to open these silicate layers. [Pg.250]

Nonferrous Metal Production. Nonferrous metal production, which includes the leaching of copper and uranium ores with sulfuric acid, accounts for about 6% of U.S. sulfur consumption and probably about the same in other developed countries. In the case of copper, sulfuric acid is used for the extraction of the metal from deposits, mine dumps, and wastes, in which the copper contents are too low to justify concentration by conventional flotation techniques or the recovery of copper from ores containing copper carbonate and silicate minerals that cannot be readily treated by flotation (qv) processes. The sulfuric acid required for copper leaching is usually the by-product acid produced by copper smelters (see Metallurgy, EXTRACTIVE Minerals RECOVERY AND PROCESSING). [Pg.125]

In 1992, R.M. Laine (University of Michigan, Ann Arbor) announced the development of a process that transforms sand and other forms of silica into reactive silicates that can be used to synthesize unusual silicon-based chemicals, polymers, glasses, and ceramics. The Lame procedure produces pentacoordinate silicates directly from low-cost raw materials—silicon dioxide,ethylene glycol, and an alkali base. The mixture is approximately a 60 1 ratio of silica gel, fused silica (or sand) to metal hydroxide and ethylene... [Pg.1475]

The ash of true leather tanned with tannin consists essentially of calcium carbonate with traces of iron and of phosphates. Coloured leathers may contain metals from the mordants used (tin, copper, iron, chromium, aluminium) tin may also be introduced as stannous chloride used for bleaching. Small quantities of silicates (talc, kaolin) may be employed in the treatment of the leather. Finally, other mineral matters (barium, magnesium and lead salts and sodium chloride) may have been added as filling to increase the weight. Complete quantitative analysis of the ash is rarely necessary, but determination of its calcium content is sometimes required, this being made by the ordinary methods. [Pg.358]

The W isotopic compositions of various terrestrial samples, chondrites, iron meteorites, basaltic achondrites, lunar samples, and Martian meteorites are expressed as deviations in parts per 104 from the value for the silicate earth (such as the W in a drill bit or chisel), which are the same as those of average solar system materials, represented by carbonaceous chondrites. These values are summarized in Fig. 8.9, from which it can be seen that early segregated metals such as the iron meteorites and metals from ordinary chondrites have only unradiogenic W because they formed early with low Hf/W. The time differences between metal objects segregated from parents with chondritic Hf/W are revealed by the differences in W isotopic compositions between each of the metal objects and chondrites. The Hf-W model ages of all these metals indicate that all of their parent bodies formed within a few million years, implying rapid accretion in the early history of the solar system. [Pg.310]

The term corrosion has its origin in Latin. The Latin term rodere means gnawing and corrodere means gnawing to pieces . It is rather interesting to examine the historical aspects of the developments of corrosion. Metallic corrosion has no doubt been a problem since common metals were first put to use. Most metals occur in nature as compounds, such as oxides, sulfides, silicates or carbonates (very few metals occur in native form). The obvious reason is the thermodynamic stability of the compounds as opposed to the metals. The process of extraction of a metal from the ore is reduction. [Pg.3]

Important ion exchangers and sorbents are, as can be seen from the Table 8, clay minerals and zeolites (aluminous silicates), metal oxides (mainly iron and manganese oxides), and organic matter. [Pg.27]

Henderson, M. E. K. Duff, R. B. (1963). The release of metallic and silicate ions from minerals, rock, and soils by fungal activity. Journal of Soil Science, 14, 236 6. [Pg.46]


See other pages where Silicate metals from is mentioned: [Pg.365]    [Pg.323]    [Pg.324]    [Pg.323]    [Pg.324]    [Pg.867]    [Pg.123]    [Pg.53]    [Pg.336]    [Pg.99]    [Pg.10]    [Pg.336]    [Pg.750]    [Pg.535]    [Pg.414]    [Pg.11]    [Pg.215]    [Pg.217]    [Pg.225]    [Pg.271]    [Pg.335]    [Pg.470]    [Pg.508]    [Pg.267]    [Pg.967]    [Pg.700]    [Pg.264]    [Pg.309]    [Pg.969]    [Pg.7]    [Pg.143]    [Pg.666]    [Pg.250]   
See also in sourсe #XX -- [ Pg.456 ]




SEARCH



© 2024 chempedia.info