Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Signal transduction phospholipases

Fig. 5.28 Classification ofthe phospholipases and the reaction of phospholipase C. a) Cleavage specificity of phospholipases Al, A2, C and D. b) Cleavage of inositol-containing phospholipids by phospholipase C. In a reaction of particular importance for signal transduction, phospholipase C (PL-C) catalyzes the cleavage of phosphatidyl inositol-4, 5-bisphosphate (Ptdlns(4,5)P2) into the messenger substances diacylglycerol and inositol 1,4,5-triphosphate (lns(l,4,5)P3). Fig. 5.28 Classification ofthe phospholipases and the reaction of phospholipase C. a) Cleavage specificity of phospholipases Al, A2, C and D. b) Cleavage of inositol-containing phospholipids by phospholipase C. In a reaction of particular importance for signal transduction, phospholipase C (PL-C) catalyzes the cleavage of phosphatidyl inositol-4, 5-bisphosphate (Ptdlns(4,5)P2) into the messenger substances diacylglycerol and inositol 1,4,5-triphosphate (lns(l,4,5)P3).
Figure 1. Simplified schematic of receptor-mediated signal transduction in neutrophils. Binding of ligand to the receptor activates a guanine-nucleotide-binding protein (G protein), which then stimulates phospholipase C. Phosphatidylinositol 4,5-bis-phosphate is cleaved to produce diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). DAG stimulates protein kinase C. IP3 causes the release of Ca from intracellular stores, which results in an increase in the cytosolic Ca concentration. This increase in Ca may stimulate protein kinase C, calmodulin-dependent protein kinases, and phospholipase A2. Protein phosphorylation events are thought to be important in stimulating degranulation and oxidant production. In addition, ionic fluxes occur across the plasma membrane. It is possible that phospholipase A2 and ionic channels may be governed by G protein interactions. ... Figure 1. Simplified schematic of receptor-mediated signal transduction in neutrophils. Binding of ligand to the receptor activates a guanine-nucleotide-binding protein (G protein), which then stimulates phospholipase C. Phosphatidylinositol 4,5-bis-phosphate is cleaved to produce diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). DAG stimulates protein kinase C. IP3 causes the release of Ca from intracellular stores, which results in an increase in the cytosolic Ca concentration. This increase in Ca may stimulate protein kinase C, calmodulin-dependent protein kinases, and phospholipase A2. Protein phosphorylation events are thought to be important in stimulating degranulation and oxidant production. In addition, ionic fluxes occur across the plasma membrane. It is possible that phospholipase A2 and ionic channels may be governed by G protein interactions. ...
Fig. 12. Tentative model of the signal transduction chain that links the perception of pectic fragments to defense responses in carrot cells. Abbreviations apy, heterotrimeric G protein CaM, calmodulin 4CL, 4-coumarate-CoA ligase CTX, cholera toxin FC, fusicoccine GDP-P-S and GTP-y-S, guanosine 5 -0-(2-thiodiphosphate) and guanosine 5 -0-(3-thiotriphosphate) IP3, 1,4,5-inositol trisphosphate PAL, phenylalanine ammonia-lyase PLC, phospholipase C PR, pathogenesis related PTX, pertussis toxin Rc, receptor SP, staurosporine. Activation and inhibition are symbolized by + and -respectively. Fig. 12. Tentative model of the signal transduction chain that links the perception of pectic fragments to defense responses in carrot cells. Abbreviations apy, heterotrimeric G protein CaM, calmodulin 4CL, 4-coumarate-CoA ligase CTX, cholera toxin FC, fusicoccine GDP-P-S and GTP-y-S, guanosine 5 -0-(2-thiodiphosphate) and guanosine 5 -0-(3-thiotriphosphate) IP3, 1,4,5-inositol trisphosphate PAL, phenylalanine ammonia-lyase PLC, phospholipase C PR, pathogenesis related PTX, pertussis toxin Rc, receptor SP, staurosporine. Activation and inhibition are symbolized by + and -respectively.
Other enzymes present in myelin include those involved in phosphoinositide metabolism phosphatidylinositol kinase, diphosphoinositide kinase, the corresponding phosphatases and diglyceride kinases. These are of interest because of the high concentration of polyphosphoinositides of myelin and the rapid turnover of their phosphate groups. This area of research has expanded towards characterization of signal transduction system(s), with evidence of G proteins and phospholipases C and D in myelin. [Pg.67]

FIGURE 14-6 Main signaling pathways for histamine receptors. Histamine can couple to a variety of G-protein-linked signal transduction pathways via its four different receptors. The Hj receptor activates the phosphatidylinositol turnover via Gq/11 proteins. The other receptors either positively (H2 receptor) or negatively (H3 and H4 receptor) regulate adenylyl cyclase activity via Gs and GUo protein activation respectively. Several additional signaling pathways have been described, which are not shown. Abbreviations PfP2, phosphatidylinositol 4,5-bisphosphate PIC, phospholipase C AC, adenylyl cyclase ATP, adenosine triphosphate cAMP, cyclic AMP PKC, protein kinase C PICA, protein kinase A. [Pg.259]

Although there are several classes of phospholipases, the phospholipase C (PLC) family is the one that has recently received intense scrutiny in the general context of signal transduction. The present account therefore details recent structural and mechanistic studies of one member of this important super family of enzymes, the phosphatidylcholine-preferring phospholipase C from B. cereus (PLCB(.). [Pg.131]

With their newly accorded significance in signal transduction and membrane studies, the increase in knowledge about phospholipases has been remarkable. [Pg.131]

GM-CSF and IL-3 have been shown to compete for receptors in some types of cells (e.g. eosinophils and KG-1 cells), indicating some structural homology between GM-CSF and IL-3 receptors, perhaps because they share certain subunits or adapter proteins. GM-CSF occupancy results in phosphorylation of certain proteins, and because the receptor possesses no inherent kinase activity, receptor occupancy must be linked to kinase activity via the generation of second messenger molecules. Pretreatment of cells with pertussis toxin abolishes the effects of GM-CSF, indicating the involvement of G-proteins in signal transduction. Priming of neutrophil functions with GM-CSF involves the activation of phospholipases A2 and D. [Pg.47]

Billah, M. M., Eckel, S., Mullmann, T. J., Egan, R. W., Siegel, M. I. (1989). Phosphatidylcholine hydrolysis by phospholipase D determines phosphatidate and diglyceride levels in chemotactic peptide-stimulated human neutrophils. Involvement of phosphatidate phosphohydrolase in signal transduction. J. Biol. Chem. 264, 17069-77. [Pg.232]

DeBell, K. E., Conti, A., Alava, M. A., Hoffman, T., and Bonvini, E. (1992) Microfilament assembly modulates phospholipase C-mediated signal transduction by the TCR/CD3 in murine T helper lymphocytes. J. Immunol. 149,2271-2280. [Pg.298]


See other pages where Signal transduction phospholipases is mentioned: [Pg.279]    [Pg.830]    [Pg.1001]    [Pg.1140]    [Pg.174]    [Pg.190]    [Pg.200]    [Pg.528]    [Pg.319]    [Pg.323]    [Pg.372]    [Pg.66]    [Pg.136]    [Pg.83]    [Pg.105]    [Pg.118]    [Pg.266]    [Pg.44]    [Pg.257]    [Pg.282]    [Pg.419]    [Pg.424]    [Pg.210]    [Pg.102]    [Pg.19]    [Pg.22]    [Pg.301]    [Pg.98]    [Pg.178]    [Pg.239]    [Pg.68]    [Pg.179]    [Pg.490]    [Pg.100]    [Pg.170]    [Pg.167]    [Pg.36]    [Pg.250]    [Pg.312]   
See also in sourсe #XX -- [ Pg.83 ]




SEARCH



Phospholipase

Phospholipases

Phospholipases phospholipase

Signal transduction

Signal transduction phospholipase

Signal transduction phospholipase

Signaling phospholipase

Signaling transduction

© 2024 chempedia.info