Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Serum analysis toxic metals

Bearse, R.C., Close, D.A., Malanify, J.J., and Umbarger, C.J. (1974). Elemental analysis of whole blood using proton-induced X-ray emission. Anal. Chem., 4 , 499-503 Berman, E. (1980) Toxic metals and their analysis, Heyden, London, Philadelphia, Rheine Brown, A.A., and Taylor, A. (1984) Determination of copper and zinc in serum and urine by use of slotted quartz tube and flame atomic absorption spectrometry. Analyst, 109. 1455-1459... [Pg.368]

The determination of trace metal impurities in pharmaceuticals requires a more sensitive methodology. Flame atomic absorption and emission spectroscopy have been the major tools used for this purpose. Metal contaminants such as Pb, Sb, Bi, Ag, Ba, Ni, and Sr have been identified and quantitated by these methods (59,66-68). Specific analysis is necessary for the detection of the presence of palladium in semisynthetic penicillins, where it is used as a catalyst (57), and for silicon in streptomycin (69). Furnace atomic absorption may find a significant role in the determination of known impurities, due to higher sensitivity (Table 2). Atomic absorption is used to detect quantities of known toxic substances in the blood, such as lead (70-72). If the exact impurities are not known, qualitative as well as quantitative analysis is required, and a general multielemental method such as ICP spectrometry with a rapid-scanning monochromator may be utilized. Inductively coupled plasma atomic emission spectroscopy may also be used in the analysis of biological fluids in order to detect contamination by environmental metals such as mercury (73), and to test serum and tissues for the presence of aluminum, lead, cadmium, nickel, and other trace metals (74-77). [Pg.436]

The first requirement can be easily fulfilled by the preconcentration of the analyte before the analysis. Preconcentration has been applied to sample preparation for flame atomic absorption (25) and, more recently, for ICP (79,80) spectroscopy. However, preconcentration is not completely satisfactory, because of the increased analysis time (which may be critical in clinical analysis) and the increased chance of contamination or sample loss. Most important, however, a larger initial sample size is necessary. The apparent solution is a more sensitive technique. Table 2 lists concentrations of various metals in whole blood or serum (81,82) in comparison to limits of detection for the various atomic spectroscopy techniques. In many cases, especially for the toxic heavy metals, only flameless atomic absorption using a graphite furnace can provide the necessary sensitivity and accommodate a sample of only a few microliters (Table 1). The determination of therapeutic gold in urine and serum (83,84), chromium in serum (85), skin (86) and liver (87), copper in semen (88), arsenic in urine (89), manganese in animal tissues (90), and lead in blood (91) are but a few examples in analyses which have utilized the flameless atomic absorption technique. [Pg.436]


See other pages where Serum analysis toxic metals is mentioned: [Pg.346]    [Pg.346]    [Pg.222]    [Pg.302]    [Pg.127]    [Pg.50]    [Pg.171]    [Pg.620]    [Pg.164]   
See also in sourсe #XX -- [ Pg.285 ]




SEARCH



Analysis metals

Toxic analysis

Toxic metal analysis

Toxic metals

Toxicity, metal

© 2024 chempedia.info