Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Series fractionation system

Loss of Heat in Series Fractionation System - In series fractionation, i.e., where the bottoms from the first column feeds into the second column and the bottoms from the second feeds into the third, it is possible for the loss of heat input to a column to overpressure the following column. Loss of heat results in some of the light ends remaining with the bottoms and being transferred to the next column as feed. Under this circumstance, the overhead load of the second column may consist of its normal vapor load, plus the light ends from the first column. If the second column does not have the condensing capacity for the additional vapor load, excessive pressure could occur. [Pg.134]

Adaughterx/weff-daughter and the daughter will be effectively supported by a greater amount of parent than that in secular equilibrium. These dynamical effects will result in greater U-series fractionation than expected in static systems. [Pg.12]

Electric power loss Accumulation of noncondensibles Failure of automatic controls Loss of heat in series fractionation Volatile material entering system Heat exchanger tube failure... [Pg.1039]

Using two-stage series reactor system, gasoline fraction of hydrocarbons was also synthesized. [41] As a methanol conversion catalyst, MFI-type metallosihcate such as H-Fe-sdicate and H-Ga-sdicate were optimum for gasohn fraction synthesis. [Pg.27]

This process was first recognized by Ostwald and is known as Ostwald ripening. The mathematical details were worked out independently by Lifshitz and Slyozov and by Wagner ° and is known as the LSW theory. However, this theory is based on a mean field approximation and is restricted to low volume fraction systems. Voorhees and coworkers extended the LSW theory to finite volume fraction systems and conducted a series of flight experiments designed to test this and similar theories. ... [Pg.1635]

Coupled systems include multidimensional and multimodal systems. Multidimensional chromatography involves two columns in series preferably two capillary columns, with different selectivity or sample capacity, to optimize the selectivity of some compounds of interest in complex profiles or to provide an enrichment of relevant fractions. In multimodal systems, two chromatographic methods or eventually a sample preparation unit and a chromatographic method are coupled in series. Coupled systems that received much interest in recent years are multidimensional CGC (MDCGC), the combination of high-performance liquid chromatography with CGC (HPLC-CGC) and the on- or off-line combination of supercritical fluid extraction with CGC (SFE-CGC). Multidimensional and multimodal techniques in chromatography arc described in detail in [65],... [Pg.244]

Several separating systems are used for particulate sampling. All rely on some principle of separating the aerosol from the gas stream. Many of the actual systems use more than one type of particulate collection device in series. If a size analysis is to be made on the collected material, it must be remembered that multiple collection devices in series will collect different size fractions. Therefore, size analyses must be made at each device and mathematically combined to obtain the size of the actual particulate in the effluent stream. In any system the probe itself removes some particulate before the carrying gas reaches the first separating device, so the probe must be cleaned and the weight of material added to that collected in the remainder of the train. [Pg.544]

The preseparation utilized a 5 pim cyano column (250 cm X 4.6 mm i.d.) and a 5 p.m silica column (250 cm X 4.6 mm i.d.) in series, followed by GC analysis on an SE-54 column (25 m X 0.2 mm i.d., 0.33 p.m film thickness). The SFC system separated the aviation sample into two peaks, including saturates and single-ring aromatics as the first peak, and two-ring aromatic fractions as the second peak. These fractions were selectively cut and then transferred to the GC unit for further analysis. (Figure 12.20). [Pg.327]

A five-column configuration of Such an analyser system is depicted in Figure 14.6. The first event in the process is the analysis of Hj by injection of the contents of sample loop 2 (SL2) onto column 5 (a packed molecular sieve column). Hydrogen is separated from the other compounds and detected by TCD 2, where nitrogen is used as a carrier gas. The next event is the injection of the contents of sample loop 1 (SLl), which is in series with SL2, onto column 1. After the separation of compounds up to and including C5, and backflushing the contents of column 1, all compounds above C5 (Q+) are detected by TCDl. The fraction up to and including C5 is directed to column 2, where air, CO, COj, Cj, and 2= (ethene) are separated from... [Pg.384]

Real reactors can have 0 < cr < 1, and a model that reflects this possibility consists of a stirred tank in series with a piston flow reactor as indicated in Figure 15.1(a). Other than the mean residence time itself, the model contains only one adjustable parameter. This parameter is called the fractional tubularity, Xp, and is the fraction of the system volume that is occupied by the piston flow element. Figure 15.1(b) shows the washout function for the fractional tubularity model. Its equation is... [Pg.549]

The MW dependences of the normalized chain relaxation times in melts of linear and branched samples are compared in Fig. 12. Both can be represented by scaling power laws, but with remarkably different scaling exponents. For the melts of linear chains, the exponent 3.39 is observed close to the typical value of 3.4 for such systems. In contrast, for the fractions of the branched polymer, the exponent is considerably lower (2.61). It is interesting to note that the value of the normalized chain relaxation time for the feed polymer with the broad M WD fits nicely into the data for the fractions with narrow MWDs. This seems to indicate that conclusions can also be drawn from a series of hyperbranched polymers with broad MWDs. [Pg.25]


See other pages where Series fractionation system is mentioned: [Pg.31]    [Pg.250]    [Pg.865]    [Pg.183]    [Pg.15]    [Pg.192]    [Pg.211]    [Pg.188]    [Pg.89]    [Pg.506]    [Pg.1496]    [Pg.622]    [Pg.447]    [Pg.271]    [Pg.489]    [Pg.31]    [Pg.155]    [Pg.409]    [Pg.466]    [Pg.1547]    [Pg.13]    [Pg.132]    [Pg.67]    [Pg.261]    [Pg.107]    [Pg.225]    [Pg.822]    [Pg.777]    [Pg.329]    [Pg.94]    [Pg.328]    [Pg.641]    [Pg.26]    [Pg.124]    [Pg.202]    [Pg.261]   
See also in sourсe #XX -- [ Pg.134 ]




SEARCH



Fractionation systems

Series fractionation

Series systems

© 2024 chempedia.info