Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Separation fractional crystallization

If a mixture of two compounds differing only very slightly in solubility must be separated, fractional crystallization may be resorted to in order to effect a separation. A typical example of such an operation would be the separation of the optical isomers of an acid by converting it to a salt with an optically active amine and separating th diastereomers thus formed. [Pg.110]

A -aryl Schiff s bases, 59-60, 60/ 61r Nd-Fe-B magnets separation fractional crystallization method, 170 hydrothermal method, 173 leaching process, 170-171 roasting-leaching, 171 selective leaching, 171-172 solvent extraction, 173-175 Nematic columnar phase, 12-13, I2f Nematic phase, 9-10 Neodymium (Nd) structural properties, 281-285 thermodynamic functions... [Pg.597]

Second-order phase transition, 19-20 Slope-analysis method, 260 Sm-Co magnets separation fractional crystallization, 169 leaching, 168 169 metals recovery, 169 process options, 168/... [Pg.599]

KCl —NaCl —MgS04) and in many brines. Separated by fractional crystallization, soluble water and lower alcohols. Used in fertilizer production and to produce other potassium salts. [Pg.324]

For preparative purposes batch fractionation is often employed. Although fractional crystallization may be included in a list of batch fractionation methods, we shall consider only those methods based on the phase separation of polymer solutions fractional precipitation and coacervate extraction. The general principles for these methods were presented in the last section. In this section we shall develop these ideas more fully with the objective of obtaining a more narrow distribution of molecular weights from a polydisperse system. Note that the final product of fractionation still contains a distribution of chain lengths however, the ratio M /M is smaller than for the unfractionated sample. [Pg.537]

Ciyst lliz tion. Low temperature fractional crystallization was the first and for many years the only commercial technique for separating PX from mixed xylenes. As shown in Table 2, PX has a much higher freezing point than the other xylene isomers. Thus, upon cooling, a pure soHd phase of PX crystallizes first. Eventually, upon further cooling, a temperature is reached where soHd crystals of another isomer also form. This is called the eutectic point. PX crystals usually form at about —4° C and the PX-MX eutectic is reached at about —68° C. In commercial practice, PX crystallization is carried out at a temperature just above the eutectic point. At all temperatures above the eutectic point, PX is stiU soluble in the remaining Cg aromatics Hquid solution,... [Pg.417]

The exact order of the production steps may vary widely in addition, some parts of the process may also vary. Metal formate removal may occur immediately after the reaction (62) following formaldehyde and water removal, or by separation from the mother Hquor of the first-stage crystallization (63). The metal formate may be recovered to hydroxide and/or formic acid by ion exchange or used as is for deicing or other commercial appHcations. Similarly, crystallization may include sophisticated techniques such as multistage fractional crystallization, which allows a wider choice of composition of the final product(s) (64,65). [Pg.465]

Fractional crystallization may be accompHshed on a batch, continuous, or semicontkiuous basis. Oil is chilled continuously while passkig through the unit and is then passed over a continuous belt filter which separates soHd fat from the Hquid oil. The process gives poorer separation compared to solvent fractionation because oils are viscous at crystallization temperatures and are entrained to a significant extent ki the soHd fraction. The Hquid fraction, however, is relatively free of saturated material. [Pg.127]

Solubility Properties. Fats and oils are characterized by virtually complete lack of miscibility with water. However, they are miscible in all proportions with many nonpolar organic solvents. Tme solubiHty depends on the thermal properties of the solute and solvent and the relative attractive forces between like and unlike molecules. Ideal solubiHties can be calculated from thermal properties. Most real solutions of fats and oils in organic solvents show positive deviation from ideaHty, particularly at higher concentrations. Determination of solubiHties of components of fat and oil mixtures is critical when designing separations of mixtures by fractional crystallization. [Pg.132]

The product salts were separated by fractional crystallization. However, the decline of natural saltpeter mining has virtually eliminated these processes as significant sources of KNO. ... [Pg.232]

Fluorozirconate Crystallization. Repeated dissolution and fractional crystallization of potassium hexafluorozirconate was the method first used to separate hafnium and zirconium (15), potassium fluorohafnate solubility being higher. This process is used in the Prinieprovsky Chemical Plant in Dnieprodzerzhinsk, Ukraine, to produce hafnium-free zirconium. Hafnium-enriched (about 6%) zirconium hydrous oxide is precipitated from the first-stage mother Hquors, and redissolved in acid to feed ion-exchange columns to obtain pure hafnium (10). [Pg.442]

Separation Processes. The product of ore digestion contains the rare earths in the same ratio as that in which they were originally present in the ore, with few exceptions, because of the similarity in chemical properties. The various processes for separating individual rare earth from naturally occurring rare-earth mixtures essentially utilize small differences in acidity resulting from the decrease in ionic radius from lanthanum to lutetium. The acidity differences influence the solubiUties of salts, the hydrolysis of cations, and the formation of complex species so as to allow separation by fractional crystallization, fractional precipitation, ion exchange, and solvent extraction. In addition, the existence of tetravalent and divalent species for cerium and europium, respectively, is useful because the chemical behavior of these ions is markedly different from that of the trivalent species. [Pg.543]

RE(N0 )2 NH NO 4H20 for light lanthanide separation (La, Nd, Pr) 2RE(N02)3 3Mg(N03)2 24H20 for middle lanthanide separation (Sm, Eu, Gd). Bromates and ethylsulfates have been found useful. Fractional crystallization is particularly slow and tedious for the medium and heavy rare earths. [Pg.544]

A fourth ahoy separation technique is fractional crystallization. If shica is co-reduced with alumina, nearly pure shicon and an aluminum shicon eutectic can be obtained by fractional crystallization. Tin can be removed to low levels in aluminum by fractional crystallization and a carbothermic reduction process using tin to ahoy the aluminum produced, fohowed by fractional crystallization and sodium treatment to obtain pure aluminum, has been developed (25). This method looked very promising in the laboratory, but has not been tested on an industrial scale. [Pg.100]

Isomer separation beyond physical fractional crystallization has been accompHshed by derivatization using methyl formate to make /V-formyl derivatives and acetic anhydride to prepare the corresponding acetamides (1). Alkaline hydrolysis regenerates the analytically pure amine configurational isomers. [Pg.211]

Supercritical fluids can be used to induce phase separation. Addition of a light SCF to a polymer solvent solution was found to decrease the lower critical solution temperature for phase separation, in some cases by mote than 100°C (1,94). The potential to fractionate polyethylene (95) or accomplish a fractional crystallization (21), both induced by the addition of a supercritical antisolvent, has been proposed. In the latter technique, existence of a pressure eutectic ridge was described, similar to a temperature eutectic trough in a temperature-cooled crystallization. [Pg.227]

Solvent Extraction. The industrial separation of tantalum from niobium was carried out historicahy by the Marignac process of fractional crystallization of potassium heptafluorotantalate and potassium heptafluoroniobate (15,16) or the long-estabhshed Fansteel process (17), which involved the decomposition of the ore by a caustic fusion procedure. Processors have replaced these expensive processes by procedures based on solvent extraction. This technique was developed in the United States at Ames Laboratory and the U.S. Bureau of Mines (18). Figure 2 shows the flow sheet of an industrial instahation for the hydrometahurgical processing of tantalum—niobium raw materials. [Pg.325]

Chlorine and bromine add to benzene in the absence of oxygen and presence of light to yield hexachloro- [27154-44-5] and hexabromocyclohexane [30105-41-0] CgHgBr. Technical benzene hexachloride is produced by either batch or continuous methods at 15—25°C in glass reactors. Five stereoisomers are produced in the reaction and these are separated by fractional crystallization. The gamma isomer (BHC), which composes 12—14% of the reaction product, was formerly used as an insecticide. Benzene hexachloride [608-73-17, C HgCl, is converted into hexachlorobenzene [118-74-17, C Clg, upon reaction with ferric chloride in chlorobenzene solution. [Pg.40]

Boiling the solution speeds the conversion of intermediate hypobromites and bromites to bromate. The less soluble bromate can be separated from the hahde by fractional crystallization. A method that is often more economical is the oxidation of bromides into bromates by hypochlorites in aqueous solution. This can be done by passing chlorine into an alkaline bromide solution (75) ... [Pg.293]

The ease of oxidation varies considerably with the nature and number of ring substituents thus, although simple alkyl derivatives of pyrazine, quinoxaline and phenazine are easily oxidized by peracetic acid generated in situ from hydrogen peroxide and acetic acid, some difficulties are encountered. With unsymmetrical substrates there is inevitably the selectivity problem. Thus, methylpyrazine on oxidation with peracetic acid yields mixtures of the 1-and 4-oxides (42) and (43) (59YZ1275). In favourable circumstances, such product mixtures may be separated by fractional crystallization. Simple alkyl derivatives of quinoxalines are... [Pg.168]

Fractional crystallization is facilitated by inoculating the warm solution with a crystal of the species expected to separate and allowing crystallization to proceed slowly without disturbance. [Pg.82]

The starting material is moderately soluble in hot chloroform, while 2-hydroxyisophthalic acid is quite insoluble. Fractional crystallization from water, an alternative method suggested for the separation of starting material, has been found by the submitters to be unsuccessful. [Pg.51]

Although the traditional method of separating the diastereomeric compounds generated in a resolution procedure is fractional crystallization, chromatographic procedures are now common and convenient. Diastereomeric compounds exhibit different adsorption... [Pg.88]

Berry, D.A. and Ng, K.M., 1996. Separation of quaternary conjugate salt systems by fractional crystallization. American Institute of Chemical Engineers Journal, 42, 2162. [Pg.300]


See other pages where Separation fractional crystallization is mentioned: [Pg.647]    [Pg.4]    [Pg.183]    [Pg.647]    [Pg.4]    [Pg.183]    [Pg.75]    [Pg.117]    [Pg.181]    [Pg.430]    [Pg.2902]    [Pg.311]    [Pg.127]    [Pg.127]    [Pg.282]    [Pg.492]    [Pg.293]    [Pg.507]    [Pg.524]    [Pg.226]    [Pg.450]    [Pg.377]    [Pg.338]    [Pg.63]    [Pg.288]    [Pg.1655]    [Pg.538]    [Pg.179]    [Pg.3]   
See also in sourсe #XX -- [ Pg.14 ]




SEARCH



Crystal fractionation

Crystallization fractionated

Crystallization fractionation

Crystallization, separation

Crystallizers fractional crystallization

Fractional crystallization

Fractionation separation

Separ crystallization

Separation fractions

© 2024 chempedia.info