Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Self-consistent field theory electron correlation methods

The starting point of the creation of the theory of the many-electron atom was the idea of Niels Bohr [1] to consider each electron of an atom as orbiting in a stationary state in the field, created by the charge of the nucleus and the rest of the electrons of an atom. This idea is several years older than quantum mechanics itself. It allows one to construct an approximate wave function of the whole atom with the help of one-electron wave functions. They may be found by accounting for the approximate states of the passive electrons, in other words, the states of all electrons must be consistent. This is the essence of the self-consistent field approximation (Hartree-Fock method), widely used in the theory of many-body systems, particularly of many-electron atoms and ions. There are many methods of accounting more or less accurately for this consistency, usually named by correlation effects, and of obtaining more accurate theoretical data on atomic structure. [Pg.446]

Although a wide variety of theoretical methods is available to study weak noncovalent interactions such as hydrogen bonding or dispersion forces between molecules (and/or atoms), this chapter focuses on size consistent electronic structure techniques likely to be employed by researchers new to the field of computational chemistry. Not stuprisingly, the list of popular electronic structure techniques includes the self-consistent field (SCF) Hartree-Fock method as well as popular implementations of density functional theory (DFT). However, correlated wave function theory (WFT) methods are often required to obtain accmate structures and energetics for weakly bound clusters, and the most useful of these WFT techniques tend to be based on many-body perturbation theory (MBPT) (specifically, Moller-Plesset perturbation theory), quadratic configuration interaction (QCI) theory, and coupled-cluster (CC) theory. [Pg.42]

AMI Basis Sets Correlation Consistent Sets Complete Active Space Self-consistent Field (CASSCF) Second-order Perturbation Theory (CASPT2) Configuration Interaction Coupled-cluster Theory Density Functional Theory (DFT), Hartree-Fock (HF) and the Self-consistent Field Diradicals Electronic Wavefunctions Analysis G2 Theory M0ller-Plesset Perturbation Theory Natural Bond Orbital Methods Spin Contamination. [Pg.194]

If we except the Density Functional Theory and Coupled Clusters treatments (see, for example, reference [1] and references therein), the Configuration Interaction (Cl) and the Many-Body-Perturbation-Theory (MBPT) [2] approaches are the most widely-used methods to deal with the correlation problem in computational chemistry. The MBPT approach based on an HF-SCF (Hartree-Fock Self-Consistent Field) single reference taking RHF (Restricted Hartree-Fock) [3] or UHF (Unrestricted Hartree-Fock ) orbitals [4-6] has been particularly developed, at various order of perturbation n, leading to the widespread MPw or UMPw treatments when a Moller-Plesset (MP) partition of the electronic Hamiltonian is considered [7]. The implementation of such methods in various codes and the large distribution of some of them as black boxes make the MPn theories a common way for the non-specialist to tentatively include, with more or less relevancy, correlation effects in the calculations. [Pg.39]

In this paper a method [11], which allows for an a priori BSSE removal at the SCF level, is for the first time applied to interaction densities studies. This computational protocol which has been called SCF-MI (Self-Consistent Field for Molecular Interactions) to highlight its relationship to the standard Roothaan equations and its special usefulness in the evaluation of molecular interactions, has recently been successfully used [11-13] for evaluating Eint in a number of intermolecular complexes. Comparison of standard SCF interaction densities with those obtained from the SCF-MI approach should shed light on the effects of BSSE removal. Such effects may then be compared with those deriving from the introduction of Coulomb correlation corrections. To this aim, we adopt a variational perturbative valence bond (VB) approach that uses orbitals derived from the SCF-MI step and thus maintains a BSSE-free picture. Finally, no bias should be introduced in our study by the particular approach chosen to analyze the observed charge density rearrangements. Therefore, not a model but a theory which is firmly rooted in Quantum Mechanics, applied directly to the electron density p and giving quantitative answers, is to be adopted. Bader s Quantum Theory of Atoms in Molecules (QTAM) [14, 15] meets nicely all these requirements. Such a theory has also been recently applied to molecular crystals as a valid tool to rationalize and quantitatively detect crystal field effects on the molecular densities [16-18]. [Pg.105]

It is also possible to employ highly correlated reference states as an alternative to methods that employ Hartree-Fock orbitals. Multiconfigu-rational, spin-tensor, electron propagator theory adopts multiconfigura-tional, self-consistent-field reference states [37], Perturbative corrections to these reference states have been introduced recently [38],... [Pg.140]

Another class of methods uses more than one Slater determinant as the reference wave function. The methods used to describe electron correlation within these calculations are similar in some ways to the methods listed above. These methods include multiconfigurational self-consistent field (MCSCF), multireference single and double configuration interaction (MRDCI), and /V-clcctron valence state perturbation theory (NEVPT) methods.5... [Pg.24]

Density-Functional Theory. Transition metals pose a problem for classical quantum chemical methods like self-consistent field (SCF), perturbation theory, configuration interaction (Cl), and variations on these methods, because of the very large electron correlation. SCF underestimates binding substantially, and post-SCF methods are so expensive for transition metals that one can do a calculation only on models with few atoms. DFT on the other hand is relatively cheap it is about as expensive as SCF. Moreover, with the development of the generalized-gradient approximations it is also reasonably accurate. A large majority of quantum chemical... [Pg.147]

Alternatively, reaction field calculations with the IPCM (isodensity surface polarized continuum model) [73,74] can be performed to model solvent effects. In this approach, an isodensity surface defined by a value of 0.0004 a.u. of the total electron density distribution is calculated at the level of theory employed. Such an isodensity surface has been found to define rather accurately the volume of a molecule [75] and, therefore, it should also define a reasonable cavity for the soluted molecule within the polarizable continuum where the cavity can iteratively be adjusted when improving wavefunction and electron density distribution during a self consistent field (SCF) calculation at the HF or DFT level. The IPCM method has also the advantage that geometry optimization of the solute molecule is easier than for the PISA model and, apart from this, electron correlation effects can be included into the IPCM calculation. For the investigation of Si compounds (either neutral or ionic) in solution both the PISA and IPCM methods have been used. [41-47]... [Pg.241]


See other pages where Self-consistent field theory electron correlation methods is mentioned: [Pg.101]    [Pg.350]    [Pg.642]    [Pg.253]    [Pg.130]    [Pg.147]    [Pg.148]    [Pg.219]    [Pg.109]    [Pg.689]    [Pg.85]    [Pg.358]    [Pg.164]    [Pg.229]    [Pg.277]    [Pg.402]    [Pg.393]    [Pg.171]    [Pg.314]    [Pg.549]    [Pg.17]    [Pg.28]    [Pg.34]    [Pg.368]    [Pg.227]    [Pg.93]    [Pg.24]    [Pg.466]    [Pg.538]    [Pg.255]    [Pg.168]    [Pg.12]    [Pg.277]    [Pg.4]    [Pg.19]    [Pg.179]    [Pg.1215]    [Pg.12]    [Pg.2]   
See also in sourсe #XX -- [ Pg.152 ]




SEARCH



Correlated electrons

Correlation electron

Correlation field

Correlation methods

Correlation-consistent

Correlative methods

Electron Methods

Electron correlation methods

Electron correlation theories

Electron field

Electronic correlations

Electronic fields

Electrons self-consistent field

Field method

Self-Consistent Field

Self-consistent field methods, correlation

Self-consistent field theory

Self-consistent method

Self-consistent theory

Self-consisting fields

Theory method

© 2024 chempedia.info