Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Self-consistent field formulation

It is now seen that the Born-Oppenheimer approximation is equivalent to the first step in a self-consistent field formulation, for the electronic motion is taken to be strongly correlated with the nuclear configuration. First the nuclei are placed in a fixed configuration and the electronic equation (4-4) is solved. Then the nuclei are assumed to move in an average potential field En(Q) + V(Q) arising from the electronic energy parametrized by the nuclear coordinates. The self-consistency ends at this point. [Pg.186]

Werner H-J 1987 Matrix-formulated direct multiconfigurational self-consistent field and multi reference configuration interaction methods Adv. Chem. Phys. 69 1... [Pg.2355]

Gerber, R.B., Buch, V., Ratner, M.A. Time-dependent self-consistent field approximation for intramolecular energy transfer. I. Formulation and application to dissociation of van der Waals molecules. J. Chem. Phys. 77 (1982) 3022-3030. [Pg.33]

This is possible within the framework of the self-consistent field (SCF) approach to polymer configurations, described more completely elsewhere [18, 19, 51, 52]. Implementation of this method in its full form invariably requires numerical computations which are done in one of two equivalent ways (1) as solutions to diffusion- or Schrodinger-type equations for the polymer configuration subject to the SCF (in which solutions to the continuous-space formulation of the equations are obtained by discretization) or (2) as solutions to matrix equations resulting from a discrete-space formulation of the problem on a lattice. [Pg.45]

The various response tensors are identified as terms in these series and are calculated using numerical derivatives of the energy. This method is easily implemented at any level of theory. Analytic derivative methods have been implemented using self-consistent-field (SCF) methods for a, ft and y, using multiconfiguration SCF (MCSCF) methods for ft and using second-order perturbation theory (MP2) for y". The response properties can also be determined in terms of sum-over-states formulation, which is derived from a perturbation theory treatment of the field operator — [iE, which in the static limit is equivalent to the results obtained by SCF finite field or analytic derivative methods. [Pg.16]

The complete treatment of solvation effects, including the solute selfpolarization contribution was developed in the frame of the DFT-KS formalism. Within this self consistent field like formulation, the fundamental expressions (96) and (97) provide an appropriate scheme for the variational treatment of solvent effects in the context of the KS theory. The effective KS potential naturally appears as a sum of three contributions the effective KS potential of the isolated solute, the electrostatic correction which is identified with the RF potential and an exchange-correlation correction. Simple formulae for these quantities have been presented within the LDA approximation. There is however, another alternative to express the solva-... [Pg.116]

The classical-path approximation introduced above is common to most MQC formulations and describes the reaction of the quantum DoF to the dynamics of the classical DoF. The back-reaction of the quantum DoF onto the dynamics of the classical DoF, on the other hand, may be described in different ways. In the mean-field trajectory (MFT) method (which is sometimes also called Ehrenfest model, self-consistent classical-path method, or semiclassical time-dependent self-consistent-field method) considered in this section, the classical force F = pj acting on the nuclear DoF xj is given as an average over the quantum DoF... [Pg.269]

HJ.Wemer, Matrix-Formulated Direct Multiconfigurational Self Consistent Field and Multiconfiguration Reference Configuration-Interaction Methods. [Pg.254]

H.-J. Werner, Matrix-Formulated Direct Multiconfiguration Self-Consistent Field and Multiconfiguration Reference Configuration-Interaction Methods, in Ab Initio Methods in Quantum Chemistry - II (K.P. Lawley, ed.), John Wiley Sons Ltd, Chichester (1987). [Pg.292]

B. Mennucci, R. Cammi and J. Tomasi, Excited states and solvatochromic shifts within a nonequilibrium solvation approach A new formulation of the integral equation formalism method at the self-consistent field, configuration interaction, and multiconfiguration self-consistent field level, J. Chem. Phys., 109 (1998) 2798. [Pg.47]

R. Cammi and J. Tomasi, Nonequilibrium solvation theory for the polarizable continuum model - a new formulation at the SCF level with application to the case of the frequency-dependent linear electric-response function, Int. J. Quantum Chem., (1995) 465-74 B. Mennucci, R. Cammi and J. Tomasi, Excited states and solvatochromic shifts within a nonequilibrium solvation approach A new formulation of the integral equation formalism method at the self-consistent field, configuration interaction, and multiconfiguration self-consistent field level, J. Chem. Phys., 109 (1998) 2798-807 R. Cammi, L. Frediani, B. Mennucci, J. Tomasi, K. Ruud and K. V. Mikkelsen, A second-order, quadratically... [Pg.386]

The details on the operators introduced in the two schemes will be given below, here we only want to add that the addition of Henv to the solute Hamiltonian automatically leads to a modification of the solute wavefunction which has now to be determined by solving the effective Eq. (1-1). This can be done using exactly the same methods used for isolated molecules here in particular we shall mainly focus on the standard self-consistent field (SCF) approach (either in its Hartree-Fock or DFT formulation). Due to the presence of Hem the modified SCF scheme is generally known as self-consistent reaction field (SCRF). Historically the term SCRF has been coined for the QM/continuum approach but here, due the parallelism between the two schemes which will be made clear in the following sections, it will be used indistinctly for both. [Pg.4]

Semiempirical techniques are the next level of approximation for computational simulation of molecules. Compared to molecular mechanics, this approach is slow. The formulations of the self-consistent field equations for the molecular orbitals are not rigorous, particularly the various approaches for neglect of integrals for calculation of the elements of the Fock matrix. The emphasis has been on versatility. For the larger molecular systems involved in solvation, the semiempirical implementation of molecular orbital techniques has been used with great success [56,57]. Recent reviews of the semiempirical methods are given by Stewart [58] and by Rivail [59],... [Pg.233]

F. Self-Consistent Field Theory 1. Motivation and Formulation... [Pg.179]

R.B. Gerber, V. Buch and M.A. Ratner, Time-dependent self-consistent field approximation for intramolecular energy transfer. I. Formulation and application to dissociation of van der Waals molecules, J. Chem. Phys., 77 (1982), 3022 M.A. Ratner and R.B. Gerber, Excited vibrational states of polyatomic molcecules the semiclassical self-consistent field approach, J. Phys. Chem., 90 (1986) 20 R.B. Gerber and M.A. Ratner, Mean-field models for molecular states and dynamics new developments, J. Phys. Chem., 92 (1988) 3252 ... [Pg.155]

Each of these methods is based on the AFDF approach. Within the framework of the conventional Hartree-Fock-Roothaan-Hall self-consistent field linear combination of atomic orbitals (LCAO) ab initio representation of molecular wave functions built from molecular orbitals (MOs), the AFDF principle can be formulated using fragment density matrices. For a complete molecule M of some nuclear configuration K, using an atomic orbital (AO) basis of a set of n AOs density matrix P can be determined using the coefficients of AOs in the occupied MOs. The electronic density p(r) of the molecule M, a function of the three-dimensional position variable r, can be written as... [Pg.202]

The CD and UV spectra of the compound with a twisted n-electron system can be calculated by the jc-electron Self-Consistent-Field Configuration-Interaction Dipole-Velocity Molecular Orbital method (the Tc-electron SCF-CI-DV MO me-thod).8-10 In the dipole velocity method, the rotational strength I ba and dipole strength Dba which govern the sign and intensity of a CD Cotton effect and the intensity of a UV absorption band, respectively are formulated as follows ... [Pg.39]

Difficulties arise in the band structure treatment for quasilinear periodic chains because the scalar dipole interaction potential is neither periodic nor bounded. These difficulties are overcome in the approach presented in [115] by using the time-dependent vector potential, A, instead of the scalar potential. In that formulation the momentum operator p is replaced by tt =p + (e/c A while the corresponding quasi-momentum Ic becomes k = lc + (e/c)A. Then, a proper treatment of the time-dependence of k, leads to the time-dependent self-consistent field Hartree-Fock (TDHF) equation [115] ... [Pg.123]


See other pages where Self-consistent field formulation is mentioned: [Pg.113]    [Pg.113]    [Pg.146]    [Pg.249]    [Pg.249]    [Pg.364]    [Pg.109]    [Pg.70]    [Pg.241]    [Pg.94]    [Pg.450]    [Pg.470]    [Pg.215]    [Pg.227]    [Pg.229]    [Pg.2]    [Pg.41]    [Pg.234]    [Pg.47]    [Pg.88]    [Pg.640]    [Pg.129]    [Pg.218]    [Pg.110]    [Pg.130]   
See also in sourсe #XX -- [ Pg.186 ]




SEARCH



Self-Consistent Field

Self-consisting fields

© 2024 chempedia.info