Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Selenium carbonyl compounds

A mixture of 1,4-dioxane and water is often used as the solvent for the conversion of aldehydes and ketones by H2Se03 to a-dicarbonyl compounds in one step (Eq. 8.117).331 Dehydrogenation of carbonyl compounds with selenium dioxide generates the a, (i-unsaturated carbonyl compounds in aqueous acetic acid.332 Using water as the reaction medium, ketones can be transformed into a-iodo ketones upon treatment with sodium iodide, hydrogen peroxide, and an acid.333 Interestingly, a-iodo ketones can be also obtained from secondary alcohol through a metal-free tandem oxidation-iodination approach. [Pg.281]

Selenium dioxide has been used to oxidise reactive methylene group to carbonyl compound. This methylene group is in a-position to a carbonyl group. Thus cyclohexanone has been oxidised to cyclohexane -1, 2 dione. [Pg.281]

The oxidative carbonylation of amines to give ureas is at present one of the most attractive ways for synthesizing this very important class of carbonyl compounds via a phosgene-free approach. Ureas find extensive application as agrochemicals, dyes, antioxidants, resin precursors, synthetic intermediates (also for the production of carbamates and isocyanates), and HIV-inhibitors. Many transition metals (incuding Au [244], Co [248,253-255], Cu [242], Mn [249,256-258], Ni [259], Rh [246,247,260-262], Ru [224,260,263] and especially Pd [219,225,226,264-276], and, more recently, W [277-283]) as well as main-group elements (such as sulfur [284-286] and selenium [287— 292]) have been reported to promote the oxidative carbonylation of amines, usually under catalytic conditions. In some cases, carbamates and/or oxamides are formed as byproducts, thus lowering the selectivity of the process. [Pg.259]

Reduction is used for carbonyl functionalities [71, 230] such as thioesters [231], amides [232], and carbamates [233], as well as for sulfur [234] and selenium [122] compounds. Recently, the synthesis of a potential carbohydrate vaccine is described via an reduction-oxidation sequence [235]. An efficient solid-phase synthesis of pyrimidine derivatives that involved reduction of the corresponding nitro derivatives was developed by Makara et al. in 2001 (Scheme 3.9) [236]. [Pg.165]

All acetylenes with a terminal triple bond are instantaneously converted into the alkali acetylides by alkali amides in liquid ammonia. For many alkylations with primary alkyl halides liquid ammonia is the solvent of choice and the functionalization with oxirane can also be carried out in it with good results. Reactions of ROOM with sulfenyladng agents (R SSR1, R SON, R SSC R ) or elemental sulfur, selenium or tellurium are mostly very successful in ammonia, the same holds for the preparation of ROC1 from RC=CM and iodine. The results of couplings with carbonyl compounds are very variable. [Pg.20]

Selenium tetrafluoride is a liquid (bp 106 C) which is soluble in halogenated solvents enabling reactions to be carried out at atmospheric pressure. It is has been reported to fluorinate alcohols to their corresponding fluorides, carbonyl compounds to gem-difluorides, e.g. 1—2, and carboxylic acids to acid fluorides. [Pg.429]

Oxidation of the allylic carbon of alkenes may lead to allylic alcohols and derivatives or a, 3-unsaturated carbonyl compounds. Selenium dioxide is the reagent of choice to carry out the former transformation. In the latter process, which is more difficult to accomplish, Cr(VI) compounds are usually applied. In certain cases, mixture of products of both types of oxidation, as well as isomeric compounds resulting from allylic rearrangement, may be formed. Oxidation of 2-alkenes to the corresponding cc,p-unsaturated carboxylic acids, particularly the oxidation of propylene to acrolein and acrylic acid, as well as ammoxidation to acrylonitrile, has commercial importance (see Sections 9.5.2 and 9.5.3). [Pg.483]

Metallated polystyrenes are versatile intermediates for the preparation of a number of polystyrene derivatives. Metallated polystyrene has been prepared from haloge-nated polystyrenes by halogen-metal exchange [41,42,65,66] and by direct metallation of polystyrene [67-69] (see Chapter 4). Electrophiles suitable for the derivatization of metallated polystyrene include carbon dioxide, carbonyl compounds, sulfur, trimethyl borate, isocyanates, chlorosilanes, alkyl bromides, chlorodiphenylphosphine, DMF, oxirane, selenium [70], dimethyldiselenide [71], organotin halides [69], oxygen [72], etc. [41,42,65-67],... [Pg.23]

Methylmagnesium N-cyclohexyliso-propylamide, 189 By oxidation at an allylic carbon Selenium dioxide, 272 By reduction of a,0-unsaturated carbonyl compounds Sodium borohydride, 278 Sodium dithionite, 281 Other methods r-Butyllithium, 58 Butyllithium-Potassium f-butoxide,... [Pg.383]

Selenium dioxide is a most useful reagent for the oxidation of ketones or aldehydes to a-dicarbonyl compounds along with a,)3-unsaturated carbonyl compounds as by-products.291,293 The carbonyl compound probably reacts in its enol form in a way similar to that of alkene oxidation (equation 130).358... [Pg.360]

We used this strategy in chapter 6 under two-group C-X disconnections where bromination of ketones was the usual functionalisation. More relevant here are conversions of carbonyl compounds into 1,2-dicarbonyl compounds by reaction with selenium dioxide SeC>2 or by nitrosation. So acetophenone 57 gives the ketoaldehyde10 58 with SeC>2. These 1,2-dicarbonyl compounds are unstable but the crystalline hydrate 59 is stable and 58 can be reformed on heating. Since aromatic ketones such as 57 would certainly be made by a Friedel-Crafts reaction the disconnection 58a is not between the two carbonyl groups and offers an alternative strategy. [Pg.172]

Another example of the resin-capture-release technique which should see widespread applications in the future is the selenium-mediated functionalization of organic compounds. Polymer-supported selenium-derived reagents [34] are very versatile because a rich chemistry around the carbon-selenium bond has been established in solution and the difficulties arising from the odor and the toxicity of low-molecular weight selenium compounds can be avoided. Thus, reagent 26 (X = Cl) was first prepared by Michels, Kato and Heitz [35] and was employed in reactions with carbonyl compounds. This treatment yielded polymer-bound a-seleno intermediates, which were set free back into solution as enones from hydrogen peroxide induced elimination. Recently, new selenium-based functionalized polymers 26 (X = Br)-28 were developed, which have been utilized in syntheses according to Scheme 11 (refer also to Scheme 3) [36],... [Pg.271]

Selenium-containing six-membered ring heterocycles have proved to be useful catalysts in a variety of transformations. The Baylis-Hillman reaction involves the reaction of alkenes containing electron-withdrawing groups such as a,/3-unsaturated carbonyl compounds with aldehydes leading to carbon-carbon bond formation (Equation 79). The reaction is promoted by tertiary amines such as l,4-diazabicyclo[2.2.2]octane (DABCO), or tertiary phosphines and Lewis acids. Unfortunately, the Baylis-Hillman reaction is severely limited because it proceeds only very slowly <1998CC197>. Much research has been carried out in attempts to increase the rate of this reaction. [Pg.993]

Unlike many other type of radical addition reactions, the product is most often an alkyl-cobalt(III) species capable of further manipulation. These product Co—C bonds have been converted in good yields to carbon-oxygen (alcohol, acetate), carbon-nitrogen (oxime, amine), carbon-halogen, carbon-sulfur (sulfide, sulfinic acid) and carbon-selenium bonds (equations 179 and 180)354. Exceptions to this rule are the intermolecular additions to electron-deficient olefins, in which the putative organocobalt(III) species eliminates to form an a,/ -unsaturated carbonyl compound or styrene353 or is reduced (under electrochemical conditions) to the alkane (equation 181)355. [Pg.1330]

Michael reactions of a,/Uunsaturated carbonyl compounds 95 using selenium nucleophiles afford (3-seleno carbonyl derivatives 96 usually in good yields.1 This reaction has been used as a protection strategy for the a,/ -unsaturated double bond, because an oxidative elimination of the selenium moiety in 96 leads to the regeneration of the double bond.176 Such reactions have also been applied to natural product synthesis177 and in asymmetric versions of Michael additions in the presence of alkaloids as chiral ligands (Scheme 22).178... [Pg.470]

The formation of /3-hydroxyselenides through the reaction of a selenium-stabilized carbanion with carbonyl compounds has been extensively used also in the context of natural product synthesis. The phenylselenoalkyllithium compound 115 was reacted with aldehyde 116 to afford /3-hydroxyselenide 117. In a radical cyclization cascade the tricyclic molecule 118 was generated in good yields and subsequent transformations led to the synthesis of pentalenene 119 (Scheme 28).1 9 Also other natural products like zizaene and khusimone have been synthesized via a similar route.200... [Pg.473]

Selenium-stabilized carbanions can be also generated by 1,4-addition of nucleophilic reagents to a-selanyl a,[3-unsaturated carbonyl compounds. The conjugate addition of trialkylsilyllithium compounds to 133, followed by reaction with allyl iodide, afforded the addition products 134 with good m-stereoselectivity (R = Me dr 86 14 R = Ph dr 94 6) (Scheme 34).214 The addition of lithium dialkylcuprates to 2-phenylselanylcycloalk-2-enones has also been used for the synthesis of natural products.215,216... [Pg.475]

Vinyl selenides have been lithiated at the a-position by LDA983,984 at —78 °C in THF to give a-(arylselanyl)vinyllithiums 680, a-(methylselanyl)vinyllithiums 681 being obtained by selenium-lithium transmetallation from l,l-bis(methylselanyl)alkenes with n-BuLi in THF or t-BuLi in ether at —78 °C985 986. These intermediates reacted with alkyl halides, epoxides, carbonyl compounds and DMF985, the final deprotection being performed by mercury(II) salts986. [Pg.251]

Selenium-mediated allylic oxidations producing allylic alcohols have been discussed above however, in some cases oxidation proceeds further to give the a, -unsaturated carbonyl compounds directly, or mixtures of alcoholic and ketonic products. That the regioselectivity observed in these allylic oxidation reactions closely resembles that found in classical selenium dioxide oxidations is in accord with initial formation of the intermediate allylic alcohol before in situ oxidation to the carbonyl compound. This process was studied by Rapoport and was explained mechanistically as an elimination of the intermediate allylic selenite ester via a cyclic transition state, analogous to Ssi (rather than 5n20 solvolysis (Scheme 21). Of the two possible transition states (78) and (79), the cyclic alternative (78) was preferred tecause oxidation exclusively yields trans aldehydes. [Pg.108]

Selenium tetrafluoride, which can be prepared from selenium metal and chlorine trifluoridc (CIF3), was introduced by Olah as a fluorinating agent for carbonyl compounds and alcoholsT It is generally necessary to add pyridine in the reactions with alcohols I. Pyridine forms a I 1 complex with selenium tetrafluoride and neutralizes the hydrogen fluoride which is formed in the fluorination reaction. [Pg.98]

One of the more useful methods used in enolate ion chemistry is the finding that caihonyl compounds can be selentnyiated. That is. a selenium atom out be introduce onto the a position carbonyl compound. [Pg.923]

Mechanism The reaction of the enol form of the carbonyl compound A with selenium dioxide gives selenous enol ester B. The oxidative rearrangement of selenous enol ester B gives C. Loss of selenium and water from C gives the dicarbonyl compound (Scheme 7.16). [Pg.285]


See other pages where Selenium carbonyl compounds is mentioned: [Pg.119]    [Pg.535]    [Pg.173]    [Pg.122]    [Pg.330]    [Pg.9]    [Pg.125]    [Pg.360]    [Pg.119]    [Pg.41]    [Pg.200]    [Pg.287]    [Pg.146]    [Pg.131]    [Pg.320]    [Pg.486]    [Pg.486]    [Pg.490]    [Pg.132]    [Pg.173]    [Pg.373]    [Pg.84]    [Pg.924]    [Pg.4324]    [Pg.5902]   
See also in sourсe #XX -- [ Pg.128 ]

See also in sourсe #XX -- [ Pg.128 ]

See also in sourсe #XX -- [ Pg.7 , Pg.8 , Pg.128 , Pg.323 ]

See also in sourсe #XX -- [ Pg.7 , Pg.8 , Pg.128 , Pg.323 ]

See also in sourсe #XX -- [ Pg.128 ]




SEARCH



Selenium compounds

© 2024 chempedia.info