Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Selectivity parallel reactions

Multiple reactions in parallel producing byproducts. Once the reactor type is chosen to maximize selectivity, we are in a position to alter selectivity further in parallel reaction systems. Consider the parallel reaction system from Eq. (2.20). To maximize selectivity for this system, we minimize the ratio given by Eq. (2.21) ... [Pg.37]

The following details mathematical expressions for instantaneous (point or local) or overall (integral) selectivity in series and parallel reactions at constant density and isotliermal conditions. An instantaneous selectivity is defined as the ratio of the rate of formation of one product relative to the rate of formation of another product at any point in the system. The overall selectivity is the ratio of the amount of one product formed to the amount of some other product formed in the same period of time. [Pg.355]

Methanol oxidation on Pt has been investigated at temperatures 350° to 650°C, CH3OH partial pressures, pM, between 5-10"2 and 1 kPa and oxygen partial pressures, po2, between 1 and 20 kPa.50 Formaldehyde and C02 were the only products detected in measurable concentrations. The open-circuit selectivity to H2CO is of the order of 0.5 and is practically unaffected by gas residence time over the above conditions for methanol conversions below 30%. Consequently the reactions of H2CO and C02 formation can be considered kinetically as two parallel reactions. [Pg.398]

The Diels Alder reactions of maleic anhydride with 1,3-cyclohexadiene, as well the parallel reaction network in which maleic anhydride competes to react simultaneously with isoprene and 1,3-cyclohexadiene [84], were also investigated in subcritical propane under the above reaction conditions (80 °C and 90-152 bar). The reaction selectivities of the parallel Diels-Alder reaction network diverged from those of the independent reactions as the reaction pressure decreased. In contrast, the same selectivities were obtained in both parallel and independent reactions carried out in conventional solvents (hexane, ethyl acetate, chloroform) [84]. [Pg.287]

The catalyst performance depends on the H2 to CCI2F2 feed ratio. The selectivities to CH2F2 and CHCIF2 are influenced by the H2 to CCI2F2 feed ratio, while the selectivity to methane is independent of this ratio. We have previously proposed a reaction mechanism with serial reactions on the catalyst surface and minor readsorption of the intermediate products, which is depicted in figure 8 [4,5]. Thus the kinetics of the reaction follows mainly parallel reaction pathways, in which the selectivities are not influenced by the conversion, and a... [Pg.375]

Maleic anhydride is an important industrial fine chemical (see original citations in [43]). The oxidation of C4-hydrocarbons in air is a highly exothermic process, therefore carried out at low hydrocarbon concentration (about 1.5%) and high conversion. The selectivity of 1-butene to maleic anhydride so far is low. The reaction is composed of a series of elementary reactions via intermediates such as furan and can proceed to carbon dioxide with even larger heat release. As a consequence, hot spots form in conventional fixed-bed reactors, decrease selectivity and favor other parallel reactions. [Pg.309]

Oxides of Platinum Metals Anodes of platinum (and more rarely of other platinum metals) are used in the laboratory for studies of oxygen and chlorine evolution and in industry for the synthesis of peroxo compounds (such as persulfuric acid, H2S2O8) and organic additive dimerization products (such as sebacic acid see Section 15.6). The selectivity of the catalyst is important for all these reactions. It governs the fraction of the current consumed for chlorine evolution relative to that consumed in oxygen evolution as a possible parallel reaction it also governs the current yields and chemical yields in synthetic electrochemical reactions. [Pg.546]

Au/C was established to be a good candidate for selective oxidation carried out in liquid phase showing a higher resistance to poisoning with respect to classical Pd-or Pt-based catalysts [40]. The reaction pathway for glycerol oxidation (Scheme 1) is complicated as consecutive or parallel reactions could take place. Moreover, in the presence of a base interconversion between different products through keto-enolic equilibria could be possible. [Pg.358]

The E-model was also applied to a system of parallel reactions (Baldyga and Bourne, 1990a). It was found that selectivity depends on compositions of both the initial reactor content and the stream added for chemically equivalent mixtures of three reactants (see reaction system given by Eqns. (5.4-143) and (5.4-144)). For an instantaneous reaction, the yield of 5 varies from 0 to 100 % depending on the mode of composing the feeding stream. [Pg.344]

Parallel reactions, oai = om2, a i = am = 0, Ei > E2. The. selectivity to the desired product increases with temperature. The highest allowable temperature and the highest reactant concentrations should be applied. A batch reactor, a tubular reactor, or a cascade of CSTRs is the best choice. [Pg.385]

Parallel reactions, omi = oa2, aai = am = 0, E < E2. The selectivity of the desired product decreases with temperature. However, a low temperature disfavours the reaction rate. A nonuniform temperature-time profile should be applied to maximize the reactor productivity (see Fig. 5.4-70). Initially the temperature should be low to avoid the formation of too much unwanted product. The temperature is gradually raised with time to increase the reaction rate until the maximum allowable temperature is reached. At T u the reaction is completed. [Pg.385]

The selectivity in a system of parallel reactions does not depend much on the catalyst size if effective diffusivities of reactants, intermediates, and products are similar. The same applies to consecutive reactions with the product desired being the final product in the series. In contrast with this, for consecutive reactions in which the intermediate is the desired product, the selectivity much depends on the catalyst size. This was proven by Edvinsson and Cybulski (1994, 1995) for. selective hydrogenations and also by Colen et al. (1988) for the hydrogenation of unsaturated fats. Diffusion limitations can also affect catalyst deactivation. Poisoning by deposition of impurities in the feed is usually slower for larger particles. However, if carbonaceous depositions are formed on the catalyst internal surface, ageing might not depend very much on the catalyst size. [Pg.388]

Multiple reaction selectivity can be defined similarly as the ratio of the rate of formation of the desired product to the formation rate of an undesired product as in a parallel reaction... [Pg.57]

Here Sb,c is selectivity of the desired product B to unwanted product in this parallel reaction. [Pg.58]

A cascade of 3 tanks in series is used to optimise the selectivity of a complex sequential-parallel reaction. Depending on the kinetics, distributing the feed of one reactant among the tanks may lead to improved selectivity. [Pg.330]

What reactor configuration would you use to maximize the selectivity in the following parallel reactions ... [Pg.96]

A parallel reaction occurs leading to a selectivity loss ... [Pg.118]

Added to this, the mass transfer can also influence the selectivity. For example, consider a system of two parallel reactions in which the second reaction produces an unwanted by product and is slow relative to the primary reaction. The dissolving gas species will tend to react in the liquid film and not reach the bulk liquid in significant quantity for further reaction to occur there to form the by product. Thus, in this case, the selectivity would be expected to be enhanced by the mass transfer between the phases. In other cases, little or no influence can be expected. [Pg.126]

In summary, the total oxidation of propylene to C02 occurred at a higher rate than partial oxidation to propylene oxide and acetone total and partial oxidations occurred in parallel pathways. The existence of the parallel reaction pathways over Rh/Al203 suggest that the selective poisoning of total oxidation sites could be a promising approach to obtain high selectivity toward PO under high propylene conversion. [Pg.409]

If the orders of the two parallel reactions are identical, the selectivity is a constant given by the ratio of the rate constants... [Pg.319]

In the case of other parallel reactions with different reaction rate expressions, similar analyses can be used to determine the influence of various reactant concentrations on the selectivity of a proposed process. Such analyses would lead to the following generalization, which is useful in considerations of parallel reactions where the reactant concentration level influences the product distribution. [Pg.319]

For the parallel reactions in equation 10.7.1 one may use this general rule to select the follpw-ing operating conditions as optimum from a selectivity viewpoint when the reactor operates isothermally. [Pg.378]

Independent Parallel Reactions of Different Species on the Same Catalyst. One often requires a catalyst that promotes the reactions of one component of a feedstock but does not promote the reactions of other constituents of the mixture. For example, one might desire to dehydrogenate six-membered rings, but not five-membered rings. This type of selectivity behavior may be represented by mechanistic equations of the form... [Pg.468]

In order to implement the PDF equations into a LES context, a filtered version of the PDF equation is required, usually denoted as filtered density function (FDF). Although the LES filtering operation implies that SGS modeling has to be taken into account in order to capture micromixing effects, the reaction term remains closed in the FDF formulation. Van Vliet et al. (2001) showed that the sensitivity to the Damkohler number of the yield of competitive parallel reactions in isotropic homogeneous turbulence is qualitatively well predicted by FDF/LES. They applied the method for calculating the selectivity for a set of competing reactions in a tubular reactor at Re = 4,000. [Pg.214]

It is more difficult to develop general guidelines regarding the selection and design of a reactor for a series-parallel reaction network than for a parallel-reaction or a series-reaction network separately. It is still necessary to take into account the relative... [Pg.441]

Micromixing may also have a major impact upon the yield and selectivity of complex reaction networks. Consider, for example, the following parallel reaction network, where both a desired product (D) and an undesired product (U) may be formed ... [Pg.504]

The now familiar alternatives of visual and potentiometric detection are available. A number of organic dyes form coloured chelates with many metal ions. These coloured chelates are often discernible to the eye at concentrations of 10 6-10 7 mol dm 3 and can function as visual indicators. Most metal ion indicators will also undergo parallel reactions with protons bringing about similar colour changes. Hence, a careful consideration of pH is prudent when selecting an indicator. Some typical indicators appear in Table 5.9. Of these, eriochrome black T, which forms red complexes with over twenty metal ions, is amongst the most widely used. Its behaviour will serve as a general example of indicator function. [Pg.210]

An alternative strategy for selective intermolecular G-H insertions has been the use of rhodium carbenoid systems that are more stable than the conventional carbenoids derived from ethyl diazoacetate. Garbenoids derived from aryldiazoacetates and vinyldiazoacetates, so-called donor/acceptor-substituted carbenoids, have been found to display a very different reactivity profile compared to the traditional carbenoids.44 A clear example of this effect is the rhodium pivalate-catalyzed G-H insertion into cyclohexane.77 The reaction with ethyl diazoacetate gave the product only in 10% yield, while the parallel reaction with ethyl phenyldiazoacetate gave the product in 94% yield (Equation (10)). In the first case, carbene dimerization was the dominant reaction, while this was not observed with the donor/acceptor-substituted carbenoids. [Pg.170]

It should be noted that there are cases in which some selectivity will be lost in choosing a semi-batch mode over a simple batch reactor. If the desired product decomposes by a consecutive reaction, the yield will be higher in the batch reactor [177]. If, on the other hand, the reactants are producing by-products by a parallel reaction, the semi-batch process will give the higher yield. In any case, if the heat production rate per unit mass is very high, the reaction can then be run safely under control only in a semi-batch reactor. [Pg.112]

A semi-continuous reactor is used to carry out the following parallel reaction, where P is valuable product and Q is unwanted waste. The problem is to optimise the feed strategy to the reactor such that the maximum favourable reaction selectivity is obtained, for similar systems but of differing kinetic rate characteristics. [Pg.347]


See other pages where Selectivity parallel reactions is mentioned: [Pg.182]    [Pg.182]    [Pg.91]    [Pg.352]    [Pg.359]    [Pg.228]    [Pg.179]    [Pg.324]    [Pg.172]    [Pg.149]    [Pg.162]    [Pg.417]    [Pg.230]    [Pg.71]    [Pg.403]    [Pg.216]   
See also in sourсe #XX -- [ Pg.30 ]

See also in sourсe #XX -- [ Pg.286 , Pg.287 , Pg.317 ]

See also in sourсe #XX -- [ Pg.295 ]




SEARCH



Parallel reactions

Reaction parallel reactions

Reaction selective

Reactions selection

Selected reactions

Selectivity reactions

© 2024 chempedia.info