Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Selected solvents, properties

Green Solvents/Reaction Conditions Database Provides detailed information about solvents and reaction conditions and supplies selected solvent properties that help to identify alternative, less hazardous solvents. [Pg.258]

Table 2.1 Selected solvent properties of water and four organic solvents... Table 2.1 Selected solvent properties of water and four organic solvents...
Table 3. Neutral Red absorption (cm-1) in various solvents and some selective solvent properties... Table 3. Neutral Red absorption (cm-1) in various solvents and some selective solvent properties...
The powerful solvent properties of dimethylsulfoxide (DMSO), for example, are used to dissolve selectively the polynuclear aromatics found in oils and paraffins. The procedure is shown in Figure 2.5. [Pg.25]

Micellar structure has been a subject of much discussion [104]. Early proposals for spherical [159] and lamellar [160] micelles may both have merit. A schematic of a spherical micelle and a unilamellar vesicle is shown in Fig. Xni-11. In addition to the most common spherical micelles, scattering and microscopy experiments have shown the existence of rodlike [161, 162], disklike [163], threadlike [132] and even quadmple-helix [164] structures. Lattice models (see Fig. XIII-12) by Leermakers and Scheutjens have confirmed and characterized the properties of spherical and membrane like micelles [165]. Similar analyses exist for micelles formed by diblock copolymers in a selective solvent [166]. Other shapes proposed include ellipsoidal [167] and a sphere-to-cylinder transition [168]. Fluorescence depolarization and NMR studies both point to a rather fluid micellar core consistent with the disorder implied by Fig. Xm-12. [Pg.481]

Solvents exert their influence on organic reactions through a complicated mixture of all possible types of noncovalent interactions. Chemists have tried to unravel this entanglement and, ideally, want to assess the relative importance of all interactions separately. In a typical approach, a property of a reaction (e.g. its rate or selectivity) is measured in a laige number of different solvents. All these solvents have unique characteristics, quantified by their physical properties (i.e. refractive index, dielectric constant) or empirical parameters (e.g. ET(30)-value, AN). Linear correlations between a reaction property and one or more of these solvent properties (Linear Free Energy Relationships - LFER) reveal which noncovalent interactions are of major importance. The major drawback of this approach lies in the fact that the solvent parameters are often not independent. Alternatively, theoretical models and computer simulations can provide valuable information. Both methods have been applied successfully in studies of the solvent effects on Diels-Alder reactions. [Pg.8]

Selected physical properties of benzoic acid are given in Table 1, solubiHties in water in Table 2, solubiHties in various organic solvents in Table 3, and vapor pressures in Table 4. [Pg.52]

Caprolactam, mol wt 113.16, is a white, hygroscopic, crystalline soHd at ambient temperature, with a characteristic odor. It is very soluble in water and in most common organic solvents and is sparingly soluble in high molecular weight aUphatic hydrocarbons. Molten caprolactam is a powerful solvent for polar and nonpolar organic chemicals. Selected physical properties and solubiUties of caprolactam are Hsted in Tables 1 and 2, respectively. [Pg.427]

Sulfolane is a water-soluble biodegradable and highly polar compound valued for its solvent properties. Approximately 20 million pounds of sulfolane are consumed annually in applications that include delignification of wood, polymerization and fiber spinning, and electroplating bathes.It is a solvent for selectively extracting aromatics from reformates and coke oven products. [Pg.259]

This section provides a brief review of a number of chelating and other extraction reagents, as well as some organic solvents, with special interest as to their selective extraction properties. The handbook of Cheng et al. should be consulted for a more detailed account of organic analytical reagents.11... [Pg.169]

AB diblock copolymers in the presence of a selective surface can form an adsorbed layer, which is a planar form of aggregation or self-assembly. This is very useful in the manipulation of the surface properties of solid surfaces, especially those that are employed in liquid media. Several situations have been studied both theoretically and experimentally, among them the case of a selective surface but a nonselective solvent [75] which results in swelling of both the anchor and the buoy layers. However, we concentrate on the situation most closely related to the micelle conditions just discussed, namely, adsorption from a selective solvent. Our theoretical discussion is adapted and abbreviated from that of Marques et al. [76], who considered many features not discussed here. They began their analysis from the grand canonical free energy of a block copolymer layer in equilibrium with a reservoir containing soluble block copolymer at chemical potential peK. They also considered the possible effects of micellization in solution on the adsorption process [61]. We assume in this presentation that the anchor layer is in a solvent-free, melt state above Tg. The anchor layer is assumed to be thin and smooth, with a sharp interface between it and the solvent swollen buoy layer. [Pg.50]

Model formulation. After the objective of modelling has been defined, a preliminary model is derived. At first, independent variables influencing the process performance (temperature, pressure, catalyst physical properties and activity, concentrations, impurities, type of solvent, etc.) must be identified based on the chemists knowledge about reactions involved and theories concerning organic and physical chemistry, mainly kinetics. Dependent variables (yields, selectivities, product properties) are defined. Although statistical models might be better from a physical point of view, in practice, deterministic models describe the vast majority of chemical processes sufficiently well. In principle model equations are derived based on the conservation law ... [Pg.234]

Snyder s classification of solvent properties is important in the selection of the chromatographic conditions and the optimization of the chromatographic processes. [Pg.95]

The HcReynolds abroach, which was based on earlier theoretical considerations proposed by Rohrschneider, is formulated on the assumption that intermolecular forces are additive and their Individual contributions to retention can be evaluated from differences between the retention index values for a series of test solutes measured on the liquid phase to be characterized and squalane at a fixed temperature of 120 C. The test solutes. Table 2.12, were selected to express dominant Intermolecular interactions. HcReynolds suggested that ten solutes were needed for this purpose. This included the original five test solutes proposed by Rohrschneider or higher molecular weight homologs of those test solutes to improve the accuracy of the retention index measurements. The number of test solutes required to adequately characterize the solvent properties of a stationary phase has remained controversial but in conventional practice the first five solutes in Table 2.12, identified by symbols x through s have been the most widely used [6). It was further assumed that for each type of intermolecular interaction, the interaction energy is proportional to a value a, b, c, d, or e, etc., characteristic of each test solute and proportional to its susceptibility for a particular interaction, and to a value x, X, Z, U, s, etc., characteristic of the capacity of the liquid phase... [Pg.99]

Solubility parameters can be a useful guide to solvent selection, but precise quantitative relationships between solvent properties and extraction rates are not yet possible [37]. As an illustrative example we mention extraction of Irganox 1010 from PP [37]. Freeze-ground PP was extracted at 120 °C with 2-propanol,... [Pg.59]

Successful extraction of additives from polymeric matrices requires a proper selection of organic solvents. Solvent choice was based on the following solvent properties ... [Pg.110]

How well can continuum solvation models distinguish changes in one or another of these solvent properties This is illustrated in Table 2, which compares solvation energies for three representative solutes in eight test solvents. Three of the test solvents are those shown in Table 1, one is water, and the other four were selected to provide useful comparisons on the basis of their solvent descriptors, which are shown in Table 3. Notice that all four solvents in Table 3 have no acidity, which makes them more suitable, in this respect, than 1-octanol or chloroform for modeling biomembranes. Table 2 shows that the SM5.2R model, with gas-phase geometries and semiempirical molecular orbital theory for the wave function, does very well indeed in reproducing all the trends in the data. [Pg.86]


See other pages where Selected solvents, properties is mentioned: [Pg.93]    [Pg.12]    [Pg.93]    [Pg.93]    [Pg.12]    [Pg.93]    [Pg.149]    [Pg.1081]    [Pg.22]    [Pg.107]    [Pg.260]    [Pg.22]    [Pg.79]    [Pg.149]    [Pg.1081]    [Pg.578]    [Pg.616]    [Pg.750]    [Pg.819]    [Pg.302]    [Pg.613]    [Pg.23]    [Pg.239]    [Pg.279]    [Pg.223]    [Pg.40]    [Pg.82]    [Pg.38]    [Pg.521]    [Pg.1328]    [Pg.554]    [Pg.554]    [Pg.86]    [Pg.129]   


SEARCH



Selective solvent

Solvent propertie

Solvent properties

Solvent selection

Solvent selectivity

Solvents selecting

© 2024 chempedia.info