Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Scintillant

The X-ray instrumentation requires a commercial small angle X-ray camera, a standard fine structure X-ray generator and a sample manipulator if scanning is requested. The essential signal is the relative difference between the refraction level Ir and the absorption level Ia. Both levels are measured simultaneously by two scintillation detectors. At fixed angles of deflection this signal depends solely on the inner surface density factor C and thickness d of the sample [2] ... [Pg.558]

This opens perspectives for obtaining phase contrast information in a microfocus tomographic system Recently we have developed a desktop X-ray microtomographic system [4] with a spot size of 8 micrometer (70 KeV) and equipped with a (1024) pixel CCD, lens coupled to a scintillator. The system is now commercially available [5], The setup is sketched in Figure 1 In this work we used the system to demonstrate the feasibility for phase contrast microtomography. [Pg.574]

Various computed tomography CT- scanners for industrial applications have been designed and constructed) They use as radiation sources X-ray tubes or gamma emitting radioisotopes and as detectors NaI(Tl)-scintillators for gamma rays and image intensifiers for X-rays. [Pg.593]

Thick Csl scintillator input screen 2 mm thick (4mm possible) which enables an absorption efficiency at least five times higher than a standard Image Intensifier. [Pg.594]

Although direct coupling of a camera to a scintillator can give acceptable results one of its major drawback is the degradation of the quantum noise mainly related to the low transmission of the optics. The following schematics summarizes the particles flux (photons and electrons) across the different stages of the detector ... [Pg.595]

For the parallel recording of EEL spectra in STEM, linear arrays of semiconductor detectors are used. Such detectors convert the incident electrons mto photons, using additional fluorescent coatings or scintillators in the very same way as the TEM detectors described above. [Pg.1633]

A scintillator, sometimes known as the Daly detector, is an ion collector that is especially useful for studies on metastable ions. The principle of operation is illustrated in Figure 28.4. As with the first dynode of an electron multiplier, the arrival of a fast ion causes electrons to be emitted, and they are accelerated toward a second dynode. In this case, the dynode consists of a substance (a scintillator) that emits photons (light). The emitted light is detected by a commercial photon... [Pg.203]

An incident ion beam causes secondary electrons to be emitted which are accelerated onto a scintillator (compare this with the operation of a TV screen). The photons that are emitted (like the light from a TV screen) are detected not by eye but with a highly sensitive photon detector (photon multiplier), which converts the photon energy into an electric current. [Pg.203]

An ion beam causes secondary electrons to be ejected from a metal surface. These secondaries can be measured as an electric current directly through a Faraday cup or indirectly after amplification, as with an electron multiplier or a scintillation device. These ion collectors are located at a fixed point in a mass spectrometer, and all ions are focused on that point — hence the name, point ion collector. In all cases, the resultant flow of an electric current is used to drive some form of recorder or is passed to an information storage device (data system). [Pg.204]

By placing a suitable detector at the focus (a point detector), the arrival of ions can be recorded. Point detectors are usually a Faraday cup (a relatively insensitive device) or, more likely, an electron multiplier (a very sensitive device) or, less likely, a scintillator (another sensitive device). [Pg.408]

Arrival of ions, which have a positive or negative charge, causes an electric current to flow either directly (Faraday cup) or indirectly (electron multiplier and scintillator detectors). [Pg.408]

Mass spectrometer. An instrument in which ions are analyzed according to their mass-to-charge ratio (m/z) and in which the number of ions is determined electrically (or via scintillator, vidicon, etc.). [Pg.429]

At the other extreme we can consider the electron as a particle which can be observed as a scintillation on a phosphorescent screen. Figure 1.4(b) shows how, if there is a large number of waves of different wavelengths and amplitudes travelling in the x direction, they may reinforce each other at a particular value of x, x say, and cancel each other elsewhere. This superposition at x is called a wave packet and we can say the electron is behaving as if it were a particle at x. ... [Pg.7]

Figure 8.28 shows how the X-rays fall on the solid or liquid sample which then emits X-ray fluorescence in the region 0.2-20 A. The fluorescence is dispersed by a flat crystal, often of lithium fluoride, which acts as a diffraction grating (rather like the quartz crystal in the X-ray monochromator in Figure 8.3). The fluorescence may be detected by a scintillation counter, a semiconductor detector or a gas flow proportional detector in which the X-rays ionize a gas such as argon and the resulting ions are counted. Figure 8.28 shows how the X-rays fall on the solid or liquid sample which then emits X-ray fluorescence in the region 0.2-20 A. The fluorescence is dispersed by a flat crystal, often of lithium fluoride, which acts as a diffraction grating (rather like the quartz crystal in the X-ray monochromator in Figure 8.3). The fluorescence may be detected by a scintillation counter, a semiconductor detector or a gas flow proportional detector in which the X-rays ionize a gas such as argon and the resulting ions are counted.

See other pages where Scintillant is mentioned: [Pg.353]    [Pg.208]    [Pg.211]    [Pg.580]    [Pg.585]    [Pg.594]    [Pg.595]    [Pg.595]    [Pg.596]    [Pg.599]    [Pg.1029]    [Pg.1436]    [Pg.1436]    [Pg.1436]    [Pg.1632]    [Pg.1632]    [Pg.643]    [Pg.643]    [Pg.644]    [Pg.658]    [Pg.778]    [Pg.203]    [Pg.204]    [Pg.55]    [Pg.59]    [Pg.88]    [Pg.89]    [Pg.113]    [Pg.148]    [Pg.155]    [Pg.186]    [Pg.571]   
See also in sourсe #XX -- [ Pg.203 ]




SEARCH



Scintillator

© 2024 chempedia.info