Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Schrodinger equation atoms

Differentiating the expectation value (f 2(f) r) = (0 2 0) [see Eq. (40)] with respect to time and invoking the Schrodinger equation (atomic units)... [Pg.163]

The central equation of (non-relativistic) quantum mechanics, governing an isolated atom or molecule, is the time-dependent Schrodinger equation (TDSE) ... [Pg.226]

Reactive atomic and molecular encounters at collision energies ranging from thermal to several kiloelectron volts (keV) are, at the fundamental level, described by the dynamics of the participating electrons and nuclei moving under the influence of their mutual interactions. Solutions of the time-dependent Schrodinger equation describe the details of such dynamics. The representation of such solutions provide the pictures that aid our understanding of atomic and molecular processes. [Pg.219]

I 1 11 Schrodinger equation can be solved exactly for only a few problems, such as the particle in a box, the harmonic oscillator, the particle on a ring, the particle on a sphere and the hydrogen atom, all of which are dealt with in introductory textbooks. A common feature of these problems is that it is necessary to impose certain requirements (often called boundary... [Pg.49]

Equation (3.85) T is a translation vector that maps each position into an equivalent ition in a neighbouring cell, r is a general positional vector and k is the wavevector ich characterises the wavefunction. k has components k, and ky in two dimensions and quivalent to the parameter k in the one-dimensional system. For the two-dimensional lare lattice the Schrodinger equation can be expressed in terms of separate wavefunctions ng the X- and y-directions. This results in various combinations of the atomic Is orbitals, ne of which are shown in Figure 3.13. These combinations have different energies. The /est-energy solution corresponds to (k =0, ky = 0) and is a straightforward linear... [Pg.162]

Much of quantum chemistry attempts to make more quantitative these aspects of chemists view of the periodic table and of atomic valence and structure. By starting from first principles and treating atomic and molecular states as solutions of a so-called Schrodinger equation, quantum chemistry seeks to determine what underlies the empirical quantum numbers, orbitals, the aufbau principle and the concept of valence used by spectroscopists and chemists, in some cases, even prior to the advent of quantum mechanics. [Pg.7]

The Hydrogenic atom problem forms the basis of much of our thinking about atomic structure. To solve the corresponding Schrodinger equation requires separation of the r, 0, and (j) variables... [Pg.25]

For both types of orbitals, the coordinates r, 0, and (j) refer to the position of the electron relative to a set of axes attached to the center on which the basis orbital is located. Although Slater-type orbitals (STOs) are preferred on fundamental grounds (e.g., as demonstrated in Appendices A and B, the hydrogen atom orbitals are of this form and the exact solution of the many-electron Schrodinger equation can be shown to be of this form (in each of its coordinates) near the nuclear centers), STOs are used primarily for atomic and linear-molecule calculations because the multi-center integrals < XaXbl g I XcXd > (each... [Pg.466]

The Schrodinger equation is a nonreiativistic description of atoms and molecules. Strictly speaking, relativistic effects must be included in order to obtain completely accurate results for any ah initio calculation. In practice, relativistic effects are negligible for many systems, particularly those with light elements. It is necessary to include relativistic effects to correctly describe the behavior of very heavy elements. With increases in computer capability and algorithm efficiency, it will become easier to perform heavy atom calculations and thus an understanding of relativistic corrections is necessary. [Pg.261]

The quantum mechanics methods in HyperChem differ in how they approximate the Schrodinger equation and how they compute potential energy. The ab initio method expands molecular orbitals into a linear combination of atomic orbitals (LCAO) and does not introduce any further approximation. [Pg.34]

These atomic orbitals, called Slater Type Orbitals (STOs), are a simplification of exact solutions of the Schrodinger equation for the hydrogen atom (or any one-electron atom, such as Li" ). Hyper-Chem uses Slater atomic orbitals to construct semi-empirical molecular orbitals. The complete set of Slater atomic orbitals is called the basis set. Core orbitals are assumed to be chemically inactive and are not treated explicitly. Core orbitals and the atomic nucleus form the atomic core. [Pg.43]

The technique for this calculation involves two steps. The first step computes the Hamiltonian or energy matrix. The elements of this matrix are integrals involving the atomic orbitals and terms obtained from the Schrodinger equation. The most important con-... [Pg.43]

Rather than solve a Schrodinger equation with the Nuclear Hamiltonian (above), a common approximation is to assume that atoms are heavy enough so that classical mechanics is a good enough approximation. Motion of the particles on the potential surface, according to the laws of classical mechanics, is then the subject of classical trajectory analysis or molecular dynamics. These come about by replacing Equation (7) on page 164 with its classical equivalent ... [Pg.165]

HyperChem models the vibrations of a molecule as a set of N point masses (the nuclei of the atoms) with each vibrating about its equilibrium (optimized) position. The equilibrium positions are determined by solving the electronic Schrodinger equation. [Pg.333]

It is not the intention that this book should be a primary reference on quantum mechanics such references are given in the bibliography at the end of this chapter. Nevertheless, it is necessary at this stage to take a brief tour through the development of the Schrodinger equation and some of its solutions that are vital to the interpretation of atomic and molecular spectra. [Pg.8]

As I mentioned above, it is conventional in many engineering applications to seek to rewrite basic equations in dimensionless form. This also applies in quantum-mechanical applications. For example, consider the time-independent electronic Schrodinger equation for a hydrogen atom... [Pg.22]

So, let s get a bit more chemical and imagine the formation of an H2 molecule from two separated hydrogen atoms, Ha and Hb, initially an infinite distance apart. Electron 1 is associated with nucleus A, electron 2 with nucleus B, and the terms in the electronic Hamiltonian / ab, ba2 and are all negligible when the nuclei are at infinite separation. Thus the electronic Schrodinger equation becomes... [Pg.88]

Exact solutions to the electronic Schrodinger equation are not possible for many-electron atoms, but atomic HF calculations have been done both numerically and within the LCAO model. In approximate work, and for molecular applications, it is desirable to use basis functions that are simple in form. A polyelectron atom is quite different from a one-electron atom because of the phenomenon of shielding", for a particular electron, the other electrons partially screen the effect of the positively charged nucleus. Both Zener (1930) and Slater (1930) used very simple hydrogen-like orbitals of the form... [Pg.157]

There are two types of basis functions (also called Atomic Orbitals, AO, although in general they are not solutions to an atomic Schrodinger equation) commonly used in electronic structure calculations Slater Type Orbitals (STO) and Gaussian Type Orbitals (GTO). Slater type orbitals have die functional form... [Pg.150]

Some coordinate transformations are non-linear, like transforming Cartesian to polar coordinates, where the polar coordinates are given in terms of square root and trigonometric functions of the Cartesian coordinates. This for example allows the Schrodinger equation for the hydrogen atom to be solved. Other transformations are linear, i.e. the new coordinate axes are linear combinations of the old coordinates. Such transfonnations can be used for reducing a matrix representation of an operator to a diagonal form. In the new coordinate system, the many-dimensional operator can be written as a sum of one-dimensional operators. [Pg.309]

We use s, p, and d partial waves, 16 energy points on a semi circular contour, 135 special k-points in the l/12th section of the 2D Brillouin zone and 13 plane waves for the inter-layer scattering. The atomic wave functions were determined from the scalar relativistic Schrodinger equation, as described by D. D. Koelling and B. N. Harmon in J. Phys. C 10, 3107 (1977). [Pg.388]

The Schrodinger equation can be solved approximately for atoms with two or more electrons. There are many solutions for the wave function, ij/, each associated with a set of numbers called quantum numbers. Three such numbers are given the symbols n, , and mi. A wave function corresponding to a particular set of three quantum numbers (e.g., n = 2, = 1, mi = 0) is associated with an electron occupying an atomic orbital. From the expression for ij/y we can deduce the relative energy of that orbital, its shape, and its orientation in space. [Pg.140]

Suppose we get a little more sophisticated about our question. The more advanced student might respond that the periodic table can be explained in terms of the relationship between the quantum numbers which themselves emerge from the solutions to the Schrodinger equation for the hydrogen atom.5... [Pg.97]

And yet in spite of these remarkable successes such an ab initio approach may still be considered to be semi-empirical in a rather specific sense. In order to obtain calculated points shown in the diagram the Schrodinger equation must be solved separately for each of the 53 atoms concerned in this study. The approach therefore represents a form of "empirical mathematics" where one calculates 53 individual Schrodinger equations in order to reproduce the well known pattern in the periodicities of ionization energies. It is as if one had performed 53 individual experiments, although the experiments in this case are all iterative mathematical computations. This is still therefore not a general solution to the problem of the electronic structure of atoms. [Pg.103]

On the other hand the Thomas-Fermi method, which treats the electrons around the nucleus as a perfectly homogeneous electron gas, yields a mathematical solution that is universal, meaning that it can be solved once and for all. This feature already represents an improvement over the method which seeks to solve Schrodinger equation for every atom separately. This was one of the features that made people go back to the Thomas-Fermi approach in the hope of... [Pg.103]


See other pages where Schrodinger equation atoms is mentioned: [Pg.84]    [Pg.84]    [Pg.45]    [Pg.27]    [Pg.2154]    [Pg.2162]    [Pg.220]    [Pg.54]    [Pg.55]    [Pg.56]    [Pg.61]    [Pg.73]    [Pg.80]    [Pg.268]    [Pg.242]    [Pg.252]    [Pg.24]    [Pg.485]    [Pg.19]    [Pg.4]    [Pg.4]    [Pg.6]    [Pg.56]    [Pg.195]    [Pg.489]    [Pg.8]    [Pg.42]   
See also in sourсe #XX -- [ Pg.11 ]

See also in sourсe #XX -- [ Pg.127 ]




SEARCH



Atoms equations

© 2024 chempedia.info