Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Schiff bases synthesis

Costes, J.R, Clemente-Juan, J.M., Dahan, R et al. (2002) Dinuclear (Re , Gd ) complexes deriving from hexadentate Schiff bases synthesis, structure, and Mossbauer and magnetic properties. Inorganic Chemistry,... [Pg.399]

Imine (Schiff Base) Synthesis and Metal Complexation.355... [Pg.351]

IMINE (SCHIFF BASE) SYNTHESIS AND METAL COMPLE)(ATION [7]... [Pg.355]

The nucleophilicity of amine nitrogens is also differentiated by their environments. In 2,4,5,6-tetraaminopyrimidine the most basic 3-amino group can be selectively converted to a Schiff base. It is meta to both pyrimidine nitrogens and does not form a tautomeric imine as do the ortho- and /xira-amino groups. This factor is the basis of the commercial synthesis of triamterene. [Pg.308]

Simple esters cannot be allylated with allyl acetates, but the Schiff base 109 derived from o -amino acid esters such as glycine or alanine is allylated with allyl acetate. In this way. the o-allyl-a-amino acid 110 can be prepared after hydrolysis[34]. The Q-allyl-o-aminophosphonate 112 is prepared by allylation of the Schiff base 111 of diethyl aminomethylphosphonates. [35,36]. Asymmetric synthesis in this reaction using the (+ )-A, jV-dicyclohex-ylsulfamoylisobornyl alcohol ester of glycine and DIOP as a chiral ligand achieved 99% ec[72]. [Pg.306]

The reaction of phosphorus pentasulfide with a-acylamino carbonyl compounds of type Ilia also yields thiazoles. Even more commonly, a mercaptoketone is condensed with a nitrile of type IVa or a-mercaptoacids or their esters with Schiff bases. This ring closure is limited to the thiazolidines. In the Va ring-closure type, /3-mercaptoalkylamines serve as the principal starting materials, and ethylformate is the reactant that supplies the carbon at the 2-position of the ring. These syntheses constitute the most important route for the preparation of many thiazolidines and 2-thiazohnes. In the Vb t3fpe of synthesis, one of the reactant supplies only the carbon at the 5-position of the resultant thiazole. Then in these latter years new modern synthetic methods of thiazole ring have been developed (see Section 7 also Refs. 515, 758, 807, 812, 822). [Pg.168]

Pomeranz-Fntsch Synthesis, Isoquinolines aie available fiom the cycUzation of benzalamiaoacetals undei acidic conditions (165). The cyclization is preceded by the formation of the Schiff base (33). Although the yields ate modest, polyphosphoric acid produces product in all cases, and is especially useful for 8-substituted isoquinolines (166). [Pg.397]

A variation involves the reaction of benzylamines with glyoxal hemiacetal (168). Cyclization of the intermediate (35) with sulfuric acid produces the same isoquinoline as that obtained from the Schiff base derived from an aromatic aldehyde and aminoacetal. This method has proved especially useful for the synthesis of 1-substituted isoquinolines. [Pg.397]

Another viable method for the synthesis of L-foUc acid (1) starts from 6-formylpterin (23). The diester of L-glutamic acid (24) is condensed with 6-formylpterin (23). Reduction of the Schiff base with sodium borohydride is followed by hydrolysis to yield L-foUc acid (37). [Pg.39]

A cost-efficient synthesis of foHc acid via Schiff base formation is feasible only if 6-formylpterin (23) is readily available. This compound is prepared by the reaction of 2-bromomalondialdehyde dimethylacetal [59453-00-8] (25) with trianainopyrimidinone (10), followed by acetylation and cleavage of the acetal to give compound (23) in 51% overall yield (38). [Pg.39]

Alternatively, various 4-substituted derivatives have been prepared via synthesis of amino acid (68) by reaction of the anion formed from protected glycine and an appropriately substituted Schiff base. [Pg.70]

Preparation of spirooxaziridines from cyclic ketones poses no problems nor does oxaziridine synthesis from cyclic Schiff bases, which was preferably carried out with pyrro-lines to give, for example (245) (59JCS2102) and, in connection with tranquilizer synthesis, with heterocyclic seven-membered rings to give, for example, (246) (63JOC2459). [Pg.228]

A wide variety of /3-lactams are available by these routes because of the range of substituents possible in either the ketene or its equivalent substituted acetic acid derivative. Considerable diversity in imine structure is also possible. In addition to simple Schiff bases, imino esters and thioethers, amidines, cyclic imines and conjugated imines such as cinnamy-lidineaniline have found wide application in the synthesis of functionalized /3-lactams. A-Acylhydrazones can be used, but phenylhydrazones and O-alkyloximes do not give /3-lactams. These /3-lactam forming reactions give both cis and /raMS-azetidin-2-ones some control over stereochemistry can, however, be exercised by choice of reactants and conditions. [Pg.260]

Chromone-2-carbaldehyde, 3-methyl-synthesis, 3, 709 Chromonecarbaldehydes Knoevenagel condensation, 3, 711 Chromone-3-carbaldehydes mass spectra, 3, 615 oxidation, 3, 709 reactions, 3, 712 Schiff bases, 3, 712 synthesis, 3, 821 Chromone-2-carbonyl chloride Grignard reaction, 3, 711 Chromonecarboxamide, N-tetrazolyl-antiallergic activity, 3, 707 Chromone-2-carboxylic acid, 3-chloro-ethyl ester... [Pg.582]

The mechanistic pathway of the ordinary Friedlander synthesis is not rigorously known. Two steps are formulated. In a first step a condensation reaction, catalyzed by acid or base, takes place, that can lead to formation of two different types of products (a) an imine (Schiff base) 4, or (b) an o ,/3-unsaturated carbonyl compound 5 ... [Pg.124]

Some workers avoid delay. Pai)adium-on-carbon was used effectively for the reductive amination of ethyl 2-oxo-4-phenyl butanoate with L-alanyl-L-proline in a synthesis of the antihyperlensive, enalapril maleate. SchifTs base formation and reduction were carried out in a single step as Schiff bases of a-amino acids and esters are known to be susceptible to racemization. To a solution of 4,54 g ethyl 2-oxO 4-phenylbutanoate and 1.86 g L-alanyl-L-proline was added 16 g 4A molecular sieve and 1.0 g 10% Pd-on-C The mixture was hydrogenated for 15 hr at room temperature and 40 psig H2. Excess a-keto ester was required as reduction to the a-hydroxy ester was a serious side reaction. The yield was 77% with a diastereomeric ratio of 62 38 (SSS RSS)((55). [Pg.85]

Woodward s strychnine synthesis commences with a Fischer indole synthesis using phenylhydrazine (24) and acetoveratrone (25) as starting materials (see Scheme 2). In the presence of polyphosphor-ic acid, intermediates 24 and 25 combine to afford 2-veratrylindole (23) through the reaction processes illustrated in Scheme 2. With its a position suitably masked, 2-veratrylindole (23) reacts smoothly at the ft position with the Schiff base derived from the action of dimethylamine on formaldehyde to give intermediate 22 in 92% yield. TV-Methylation of the dimethylamino substituent in 22 with methyl iodide, followed by exposure of the resultant quaternary ammonium iodide to sodium cyanide in DMF, provides nitrile 26 in an overall yield of 97%. Condensation of 2-veratryl-tryptamine (20), the product of a lithium aluminum hydride reduction of nitrile 26, with ethyl glyoxylate (21) furnishes Schiff base 19 in a yield of 92%. [Pg.27]

Woodward s ingenious synthesis of chlorophyll a is based, in the first part of the synthetic approach, on a classical porphyrin synthesis using two dipyrrylmethanes for the formation of the macrotetracycle. The problem of regioselectivity in the connection of the two unsymmetric pyrrylmethane halves 1 and 2 was solved by the formation of SchifF base 3 between the two halves prior to the condensation so that the macrotetracycle formation occurred by an intramolecular reaction. [Pg.614]

As has been outlined for the Strecker synthesis, the Ugi reaction also proceeds via initial formation of a Schiff base from an aldehyde and an amine. The imine intermediate is attacked by the isocyanidc, a process which is supported by protonation of the imine by the carboxylic acid component. The resulting a-amino nitrilium intermediate is immediately trapped by the carboxylate to give an 6>-acyl imidiate. All steps up to this stage are reversible. Only the final oxygen to nitrogen acyl shift is irreversible and delivers the A-acyl-a-amino amide as the thermodynamically favored product which contains two amide groups. [Pg.782]

The asymmetric Strecker synthesis of a-amino nitriles from Schiff bases of a-methylbenzyl-aminc is improved by the use of trimethylsilyl cyanide, instead of hydrogen cyanide and by promotion of the transformation with a Lewis acid, preferably zinc chloride43. Thus, from the butyraldimine 2, the amino nitrile is synthesized with a yield of 98.5% and an ee of 68.5%. [Pg.788]

Recent progress of basic and application studies in chitin chemistry was reviewed by Kurita (2001) with emphasis on the controlled modification reactions for the preparation of chitin derivatives. The reactions discussed include hydrolysis of main chain, deacetylation, acylation, M-phthaloylation, tosylation, alkylation, Schiff base formation, reductive alkylation, 0-carboxymethylation, N-carboxyalkylation, silylation, and graft copolymerization. For conducting modification reactions in a facile and controlled manner, some soluble chitin derivatives are convenient. Among soluble precursors, N-phthaloyl chitosan is particularly useful and made possible a series of regioselective and quantitative substitutions that was otherwise difficult. One of the important achievements based on this organosoluble precursor is the synthesis of nonnatural branched polysaccharides that have sugar branches at a specific site of the linear chitin or chitosan backbone [89]. [Pg.158]

In 1996, Cavell described the synthesis of neutral P(VI) compound 37 containing a divalent tridentate diphenol imine ligand and three chlorine atoms by the reaction of a bis silylated Schiff base with PCI5 to give 37 after elimination of two equivalents of Me3SiCl (Scheme 7) [51]. [Pg.13]

In a total synthesis of inhibitors of this kind, the following methods have so far been employed successfully (a) reaction of a cyclohexenyl halide with an amine, (b) coupling of an amine with an epoxide, and (c) condensation of an amine with ketone and reduction of the resulting Schiff base (reductive alkylation of an amino sugar). [Pg.82]

More recently, catalytic asymmetric allylations of imines and imine derivatives in aqueous media have been studied. An /V-spiro C2-symmetrical chiral quaternary ammonium salt (5,5)-I-Br (,S, .S )-()-Np-NAS-Br] has been evaluated in the allylation of glycine tert-Bu ester benzophenone Schiff base [Ph2C=NCH2COOCMe3] for synthesis of both natural and unnatural a-amino acids (Eq. 11,45).76... [Pg.356]


See other pages where Schiff bases synthesis is mentioned: [Pg.872]    [Pg.872]    [Pg.427]    [Pg.802]    [Pg.871]    [Pg.919]    [Pg.919]    [Pg.309]    [Pg.95]    [Pg.108]    [Pg.185]    [Pg.57]    [Pg.9]    [Pg.39]    [Pg.103]    [Pg.115]    [Pg.169]    [Pg.212]    [Pg.220]    [Pg.277]    [Pg.152]    [Pg.258]    [Pg.258]    [Pg.176]    [Pg.525]    [Pg.79]   
See also in sourсe #XX -- [ Pg.19 , Pg.21 , Pg.22 , Pg.28 , Pg.29 ]




SEARCH



Glycinate Schiff Base Asymmetric Synthesis of a-Amino Acids

Macrocyclic syntheses Schiff base condensation

Schiff bases isoquinoline synthesis

© 2024 chempedia.info