Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrophilic scavengers

Among the custom made resins that have been developed recently for scavenging electrophilic substrates, a few examples are worth mentioning oligo(ethyleneimine) (20), morpholinodiethanolamine (21), amine/ami-noalcohol (22), guanidine (23), and 4-phenol-substituted (24) (Fig. 8). [Pg.397]

Supported Ionic Platforms for Scavenging Electrophiles 8.3.4.1 Task Specific Ionic Liquid Amine... [Pg.220]

The Fcm group can be removed with TFA, Ag(I), or Hg(II). The use of scavengers such as thiophenol and anisole is recommended. The Fcm group is stable to mild acid and base, but it is not stable to electrophilic reagents such as (SCN)2, VAcOH, or carboxymethylsulfenyl chloride (CmsCl). ... [Pg.466]

Many procedures for the formation of carboxylic acid amides are known in the literature. The most widely practiced method employs carboxylic acid chlorides as the electrophiles which react with the amine in the presence of an acid scavenger. Despite its wide scope, this protocol suffers from several drawbacks. Most notable are the limited stability of many acid chlorides and the need for hazardous reagents for their preparation (thionyl chloride, oxalyl chloride, phosgene etc.) which release corrosive and volatile by-products. Moreover, almost any other functional group in either reaction partner needs to be protected to ensure chemoselective amide formation.2 The procedure outlined above presents a convenient and catalytic alternative to this standard protocol. [Pg.137]

N2, and bromine trifluoride at 25-35°C " are also highly regioselective for tertiary positions. These reactions probably have electrophilic, not free-radical mechanisms. In fact, the success of the F2 reactions depends on the suppression of free-radical pathways, by dilution with an inert gas, by working at low temperatures, and/or by the use of radical scavengers. [Pg.908]

Yields in the above reactions can often be improved by the addition of 1 mole of triphenylphosphine directly to the trifluoroacetic acid solution of the reactants immediately before final work-up. It would appear that the triphenylphosphine functions as a scavenger for TTFA released in the metal-metal exchange reaction, thus protecting the final phenol from further electrophilic thallation and/or oxidation. Validation of the metal-metal exchange mechanism was obtained indirectly by isolation and characterization of an ArTlX2/LTTFA complex directly from the reaction mixture. NMR analysis revealed that this complex still possessed an intact aryl-thallium bond, indicating that it was probably the precursor to the transmetallation products, an aryllead tristrifluoroacetate and TTFA. [Pg.170]

This solvent is called tetrahydrofuran, or THF for short. Even though it somewhat stabilizes the empty p orbital on the boron atom in BH3, nevertheless the boron atom is very eager to look for any other sources of electron density that it can find. It is an electrophile—it is scavenging for sites of high electron density to fill its empty orbital. A pi bond is a site of high electron density, and therefore, a pi bond can attack borane. In fact, this is the hrst step of our mechanism. A pi bond attacks the empty p orbital of boron, which triggers a simultaneous hydride shift ... [Pg.276]

Alkenes are scavengers that are able to differentiate between carbenes (cycloaddition) and carbocations (electrophilic addition). The reactions of phenyl-carbene (117) with equimolar mixtures of methanol and alkenes afforded phenylcyclopropanes (120) and benzyl methyl ether (121) as the major products (Scheme 24).51 Electrophilic addition of the benzyl cation (118) to alkenes, leading to 122 and 123 by way of 119, was a minor route (ca. 6%). Isobutene and enol ethers gave similar results. The overall contribution of 118 must be more than 6% as (part of) the ether 121 also originates from 118. Alcohols and enol ethers react with diarylcarbenium ions at about the same rates (ca. 109 M-1 s-1), somewhat faster than alkenes (ca. 108 M-1 s-1).52 By extrapolation, diffusion-controlled rates and indiscriminate reactions are expected for the free (solvated) benzyl cation (118). In support of this notion, the product distributions in Scheme 24 only respond slightly to the nature of the n bond (alkene vs. enol ether). The formation of free benzyl cations from phenylcarbene and methanol is thus estimated to be in the range of 10-15%. However, the major route to the benzyl ether 121, whether by ion-pair collapse or by way of an ylide, cannot be identified. [Pg.15]

Scavenging acid chlorides, sulfonyl chlorides, isocyanates, and other electrophiles... [Pg.65]

Furthermore, intercepting the furylpalladium(II) species 130 with an electrophile would result in a carbodepalladation in place of protodepalladation. Therefore, a tandem intramolecular alkoxylation of p.y-acetylenic ketone 127 was realized to afford trisubstituted furan 131 when allyl chloride was added to the original recipe [103]. 2,2-Dimethyloxirane was used as a proton scavenger, ensuring exclusive formation of 3-allylated 2,5-disubstituted furan 131 without contamination by protonated furans. [Pg.290]

Analogously, 5-tributylstannylimidazole 29 was easily obtained from the regioselective deprotonation of 1,2-disubstituted imidazole 28 at C(5) followed by treatment with tributyltin chloride [24]. In the presence of 2.6 equivalents of LiCl, the Stille reaction of 29 with aryl triflate 30 afforded the desired 1,2,5-trisubstituted imidazole 31 with 2,6-di-tert-butyl-4-methylphenol (BHT) as a radical scavenger. Reversal of the nucleophile and electrophile of the Stille reaction also provided satisfactory results. For example, the coupling reaction of 5-bromoimidazole 33, derived from imidazole 32 via a regioselective bromination at C(5), and vinylstannane 34 produced adduct 35 [24],... [Pg.342]

Silverman has pointed out that several criteria must be met to demonstrate that a compound is a true suicide substrate 1101 (1) Loss of enzyme activity must be time-dependent, and it must be first-order in [inactivator] at low concentrations and zero-order at higher concentrations (saturation kinetics), (2) substrate must protect the enzyme from inactivation (by blocking the active site), (3) the enzyme must be irreversibly inactivated and be shown to have a 11 stoichiometry of suicide substrate active site (dialysis of enzyme previously treated with radiolabeled suicide substrate must not release radiolabel into the buffer), (4) the enzyme must unmask the suicide substrate s potent electrophile via a catalytic step,1121 and (5) the enzyme must not be covalently labeled with the activated form of the suicide substrate following its escape from the active site (the presence of bulky scavenging thiol nucleophiles in the buffer must not decrease the observed rate of inactivation). [Pg.360]

Protection against cell damage due to oxidative stress is provided, amongst others, by glutathione (GSH), a cellular tripeptide with a thiol function in a cysteine residue. GSH is deprotonated to GS, which is a scavenger for electrophilic compounds and is reduced to GS SG in defense of reactive oxygen species [28]. [Pg.211]

The allenylsilanes are excellent nucleophiles and they can react with a variety of electrophilic species in annulation processes that provide access to diverse products. Allenylsilane 112 (Eq. 13.36) reacts with tropylium fluoroborate 111 to provide azu-lene 113 [35]. The reaction is slow and it is necessary to use an acid scavenger so as to inhibit protiodesilylation by the fluoroboric acid that is generated during the course of the annulation. The excess tropylium salt abstracts a hydride from the reaction intermediate leading to the azulene. There are relatively few direct methods for the synthesis of azulenes. [Pg.832]

Heteroatom-substituted carbene complexes are less electrophilic than the corresponding methylene, dialkylcarbene, or diarylcarbene complexes. For this reason cyclopropanation of electron-rich alkenes with the former does not proceed as readily as with the latter. Usually high reaction temperatures are necessary, with radical scavengers being used to supress side-reactions (Table 2.16). Also acceptor-substituted alkenes can be cyclopropanated by Fischer-type carbene complexes, but with this type of substrate also heating is generally required. [Pg.45]

Scheme 2.11 Polyamine scavenger purification of electrophilic reagents. Scheme 2.11 Polyamine scavenger purification of electrophilic reagents.
Most conventional scavenging is based on the concept of complementary reactivity. In the simplest cases, electrophilic and nucleophilic species are sequestered via a reciprocally functionalized support (Scheme 2.11 see also Tab. 2.1) likewise, acids and bases can be removed via salt formation with a solid-supported base or acid. [Pg.62]

Kaldor [49 i, 55] demonstrated the advantages of applying solid-supported scavengers to the preparation of parallel arrays in a multi-step fashion. In these studies he examined the clean-up of multiple amine alkylation and acylation reactions using a variety of immobilized electrophilic and nucleophilic scavenger reagents including an amine, isocyanate, aldehyde and acid chloride (Tab. 2.1). [Pg.76]

The combinatorial library synthesis of a diverse set of trisubstituted ureas has been described [64]. The synthetic pathway involves the prehminary preparation of various nitrophenylcarbamates from commercially available nitrophenyl chlorofor-mate and a selection of amines allowing for wide scope in the divergence of the final urea products. In a further reaction of the nitrophenylcarbamates with a second amine, the urea was generated. Simultaneous addition of an electrophilic and basic scavenger resin removed all by-products, again allowing rapid isolation of the products in excellent yield and purity (Scheme 2.43). [Pg.86]


See other pages where Electrophilic scavengers is mentioned: [Pg.418]    [Pg.191]    [Pg.207]    [Pg.418]    [Pg.191]    [Pg.207]    [Pg.74]    [Pg.110]    [Pg.172]    [Pg.324]    [Pg.435]    [Pg.233]    [Pg.327]    [Pg.342]    [Pg.86]    [Pg.852]    [Pg.65]    [Pg.65]    [Pg.142]    [Pg.167]    [Pg.257]    [Pg.258]    [Pg.80]    [Pg.441]    [Pg.389]    [Pg.72]    [Pg.168]    [Pg.190]    [Pg.161]    [Pg.77]    [Pg.86]    [Pg.99]   
See also in sourсe #XX -- [ Pg.77 ]




SEARCH



Electrophile scavengers

Electrophile scavengers

Halide electrophilic scavengers

Isocyanate electrophilic scavengers

Scavengers of electrophiles

© 2024 chempedia.info