Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Scanning electron microscopy phase measurements

The phase composition from the surface to the interior of the samples was determined by X-ray diffractometry (XRD) through successive grinding of the surface at 100 pm intervals. The microstructural characterization of the sintered specimens was achieved by scanning electron microscopy (SEM) in backscattered mode. The hardness change from the surface to the interior of the sample was measured by the Vickers indentation method at 19.6 N load. [Pg.162]

The sizing methods involve both classical and modem instrumentations, based on a broad spectrum of physical principles. The typical measuring systems may be classified according to their operation mechanisms, which include mechanical (sieving), optical and electronic (microscopy, laser Doppler phase shift, Fraunhofer diffraction, transmission electron miscroscopy [TEM], and scanning electron microscopy [SEM]), dynamic (sedimentation), and physical and chemical (gas adsorption) principles. The methods to be introduced later are briefly summarized in Table 1.2. A more complete list of particle sizing methods is given by Svarovsky (1990). [Pg.10]

D nanoribbons and nanowires of different metal-containing Pcs have also been prepared by organic vapor-phase deposition (OVPD), a technique used to fabricate organic millimeter-sized crystals, thin films, or nanostructures [211], Scanning electron microscopy (SEM), TEM, x-ray diffraction (XRD), and absorption measurement studies have revealed that the morphology of the nanostructures was strongly dependent on the chemical nature of the deposited macrocycle, the nature and the temperature of the substrate, and the source-to-substrate distance. [Pg.29]

Measurements. The morphology of the blends was studied by optical microscopy (Leitz Dialux Pol), transmission electron microscopy (Jeol 100 U), and scanning electron microscopy (Cambridge MK II). Ultramicrotome sections were made with an LKB Ultratome III. Samples for scanning electron microscopy were obtained by fracturing sheets at low temperature. The fracture surfaces were etched with a 30% potassium hydroxide solution to hydrolyse the polycarbonate phase. Stress-relaxation and tensile stress-strain experiments were performed with an Instron testing machine equipped with a thermostatic chamber. Relaxation measurements were carried out in flexion (E > 108 dyn/cm2) or in traction (E < 108 dyn/cm2). Prior to each experiment, the samples were annealed to obtain volumetric equilibrium. [Pg.332]

PA6 phase of the blends. This approach was further extended to PA6 based ternary and quaternary blends in an attempt to find the applicability of this strategy. Raman spectroscopy and transmission electron microscopy (TEM) have been performed to get more insights into the role of these modifiers in debundling the MWNTs. AC electrical conductivity measurements have been carried out to assess the state of dispersion of MWNTs in the blends. Further, the phase microstructures and the localization of MWNTs in the blends have been investigated using scanning electron microscopy (SEM). [Pg.376]

Measurements of the specific surface area, SSA, of the products grown at various times indicate that the initial formation of a microcrystalline or amorphous precursor leads to a rapid increase in SSA. The development of these phases is also observed by scanning electron microscopy, and dissolution kinetic studies of the grown material have indicated the formation of OCP as a precursor phase ( , 7). The overall precipitation reaction appears to involve, therefore, not only the formation of different calcium phosphate phases, but also the concomitant dissolution of the thermodynamically unstable OCP formed rapidly in the initial stages of the reaction. In the presence of magnesium ion the overall rate of crystallization is reduced and lower Ca P ratios are observed for the first formed phases (51). [Pg.483]

This chapter outlines emulsion characterization techniques ranging from those commonly found infield environments to those in use in research laboratories. Techniques used in the determination of bulk emulsion properties, or simply the relative amount of oil, water, and solids present, are discussed, as well as those characterization methods that measure the size distribution of the dispersed phase, rheological behavior, and emulsion stability. A particular emphasis is placed on optical and scanning electron microscopy as methods of emulsion characterization. Most of the common and many of the less frequently used emulsion characterization techniques are outlined, along with their particular advantages and disadvantages. [Pg.79]

The phase composition of the resulted specimens was identified by X-ray diffraction (XRD). Rod-like pieces (3x3xl5mm) and disk-shaped pieces (2mm thickness and 10mm diameter) were cut out for the electrical conductivity measurement and the thermal conductivity measurement, respectively. Microstmcture and phase distribution were observed by a scanning electron microscopy equipped with EPMA (JEOL JXA-8621MX). Electrical conductivity was measured using a D.C. four-probe method. Thermal conductivity was measured using a laser-flash technique. All the measurements were performed in the temperature range of 300 to 1200 K. [Pg.558]


See other pages where Scanning electron microscopy phase measurements is mentioned: [Pg.64]    [Pg.105]    [Pg.39]    [Pg.358]    [Pg.592]    [Pg.55]    [Pg.224]    [Pg.7]    [Pg.600]    [Pg.340]    [Pg.189]    [Pg.13]    [Pg.118]    [Pg.410]    [Pg.1]    [Pg.97]    [Pg.109]    [Pg.60]    [Pg.148]    [Pg.233]    [Pg.423]    [Pg.313]    [Pg.530]    [Pg.378]    [Pg.373]    [Pg.379]    [Pg.431]    [Pg.62]    [Pg.64]    [Pg.84]    [Pg.153]    [Pg.347]    [Pg.399]    [Pg.496]    [Pg.271]    [Pg.955]    [Pg.474]    [Pg.392]    [Pg.260]    [Pg.229]    [Pg.113]    [Pg.187]   
See also in sourсe #XX -- [ Pg.130 , Pg.133 , Pg.142 ]




SEARCH



Electron measured

Electron measurement

Electron phases

Electronic measurements

Phase, measurement

Scanning electron microscopy

Scanning electronic microscopy

© 2024 chempedia.info