Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

S-methyl acetate

Chemical Co. s methyl acetate reactive distillation process and processes for the synthesis of fuel ethers are classic success stories in reactive distillation. Improvements for the Eastman process are very high five-times lower investment and five-times lower energy use than the traditional process. However, combining reaction and distillation is not always advantageous and in some cases it may not even be feasible. The methyl acetate process based on reactive distillation has fewer vessels, pumps, flanges, valves, piping and instruments. This is an advantage also in terms of safety and maintenance. However, a reactive distillation column itself is more complex (multiple unit operations occur within one vessel) and thus more difficult to control and operate. It is thus not possible to make unique conclusions. [Pg.52]

Methyl acetate. An anhydrous product of 99 per cent, purity (b.p. 56-5-57°) i.s available coniniercially this is comparatively cheap so that purification of inferior products is not worth while. It is appreciably soluble in water (ca. 24 per cent, at 20°). The pure compound has b.p. 57°/760 mm. [Pg.174]

Similar activation takes place in the carbonylation of dimethyl ether to methyl acetate in superacidic solution. Whereas acetic acid and acetates are made nearly exclusively using Wilkinson s rhodium catalyst, a sensitive system necessitating carefully controlled conditions and use of large amounts of the expensive rhodium triphenylphosphine complex, ready superacidic carbonylation of dimethyl ether has significant advantages. [Pg.193]

The Eastman Chemicals from Coal faciUty is a series of nine complex interrelated plants. These plants include air separation, slurry preparation, gasification, acid gas removal, sulfur recovery, CO /H2 separation, methanol, methyl acetate, and acetic anhydride. A block flow diagram of the process is shown in Eigure 3. The faciUty covers an area of 2.2 x 10 (55 acres) at Eastman s main plant site in Kingsport, Teimessee. The air separation plant is... [Pg.166]

Alkylthio, arylthio, and thioxo. The thioxo group in pyrimidine-2,4-dithione can be displaced by amines, ammonia, and amine acetates, and this amination is specific for the 4-position in pyrimidines and quinazolines. 2-Substitution fails even when a 5-substituent (cf. 134) sterically prevents reaction of a secondary amine at the 4-position. Acid hydrolysis of pyrimidine-2,4-dithione is selective at the 4-position. 2-Amination of 2-thiobarbituric acid and its /S-methyl derivative has been reported. Under more basic conditions, anionization of thioxo compounds decreases the reactivity 2-thiouracil is less reactive toward hot alkali than is the iS-methyl analog. Hydrazine has been reported to replace (95°, 6 hr, 65% 3deld) the 2-thioxo group in 5-hexyl-6-methyl-2-thiouracil. Ortho and para mercapto- or thio- azines are actually in the thione form. ... [Pg.213]

Extension of this work by reacting 5-nitropyrimidine with 0,0-ketene acetals and with other cyclic and non-cyclic enamines showed that also with these electron-rich dienophiles the addition is regioselective and gives rise to the formation of 2-mono- or 2,3-disubstituted 5-nitropyridines (Scheme 30). Thus, reaction of 5-nitropyrimidine with the cyclic N,S-ketene acetals 4,5-dihydro-1 -methyl-2-methylthiopyrrole and 4,5,6,7-tetrahydro-1 -methyl-2-methylthioazepine gives in low yields 2,3-dihydro-1-methyl-5-nitropyr-olo[2,3-h]pyridine and the 5,6,7,8-tetrahydro-9-methyl-3-nitropyrido [2,3-Z)]azepine, respectively (89T2693) (Scheme 30). [Pg.52]

Of course, the usual equilibrium considerations apply. For example, if we add the substance methanol, equilibrium conditions will shift, consuming the added reagent (methanol) and acetic acid to produce more methyl acetate and water, in accord with Le Chatelier s Principle. Thus a large excess of methanol causes most of the acetic acid to be converted to methyl acetate. [Pg.337]

The addition of the lithium enolates of methyl acetate and methyl (trimelhylsilyl)acetate to ( + )-(S)-2-(4-methylphenylsulfinyl)-2-cycloalkenones gives, after desulfurization, (/ -substituted cycloalkenones. A higher level of selectivity is observed with the a-silyl ester enolate and in the cyclohexenone series13. The stereochemical outcome is rationalized by assuming attack on a ground-state conformation analogous to that in Section 1.5.3.2.1. [Pg.1046]

CisH2407 (1 S)-5,7-Anhy dro-8-deoxy-1,2 3,4-di-O-isopropylidene-aZde-hydo-D-glycero-D-galacto-octos-6-methyl acetal AGLGAO 37 399... [Pg.395]

Ketene acetals show a pattern of product formation very similiar to enamines79 Diphenyl-4,4-diacetyl triafulvene is converted to diacetylmethyl cyclopentadiene 529 by S,N-acetals, whilst diphenyl-4,4-dicyano triafulvene undergoes C—C-inser-tion to S,N- and N,N-acetals, e.g. 530/531, resulting in cross-conjugated systems 533/534 by analogy with enamines. Cyclic S,N-acetals 532, however, yield exclusively the bicyclic fulvenes 535 due to additional loss of methyl mercaptan. [Pg.106]

The ease with which dissolution of the acetylated products can be achieved is affected by the method of isolation. In the author s experience, drying of the acetate with alcohol and ether results in apparent insolubility (even though the product was soluble at one stage of the purification process), and should be avoided. Drying, under diminished pressure, of the product precipitated by petroleum ether is sufficient. Chloroform is probably the best solvent. Nitroethane, tetrachlorethane, 2,4-pentanedione, pyridine, methyl acetate, ethyl acetate, and benzene, which have also been suggested, have disadvantages in that either they are unstable or they may cause aggregation in solution.44,116 116... [Pg.356]

Mercapto-l,2,4-thiadiazoles exist as an equilibrium of tautomers with the equilibrium favoring the thione tautomer. They are acidic with a pA a of around 5. A variety of methylating agents (e.g., diazomethane, dimethyl sulfate and methyl iodide) give S-methylated products and no N-methylation has been observed. They are readily oxidized to sulfoxides and sulfones with either z-chloroperbenzoic acid or hydrogen peroxide in acetic acid <1996CHEC-II(4)307>. There have been no new publications on S-linked substituents since the publication of CHEC-II(1996). [Pg.499]

Examination of 37 basidiomycetous yeasts indicated formation of several sulfur volatiles 3-(methylthio)-l-propanol, methanethiol (MT), S-methyl thio-acetate, dimethyl disulfide (DMDS), dimethyl trisulfide (DMTS), allyl methyl sulfide and 4,5-dihydro-3(2//)-thiophenone. The component produced in the largest amounts, 40 100 mg L-1, was 3-(methylthio)-l-propanol29 Cheeseripening yeasts are considered later (Section 11.1.2.4.5). [Pg.680]

An aqueous solution of methyl acetate (A) enters a CSTR at a rate of 0.5 L s 1 and a concentration (cAo) of 0.2 mol L-1. The tank is initially filled with 2000 L of water so that material flows out at a rate of 0.5 L s 1. A negligibly small stream of HCI (catalyst) is added to the entering solution of acetate so that the concentration of acid in the tank is maintained at 0.1 mol L-1, in which case the hydrolysis of acetate occurs at a rate characterized by kA = 1.1 I 10-4 s-1. What is the concentration of acetate in the outlet stream at the end of 30 min, and what is the eventual steady-state concentration ... [Pg.361]

The hydrolysis of methyl acetate (A) in dilute aqueous solution to form methanol (B) and acetic acid (C) is to take place in a batch reactor operating isothermally. The reaction is reversible, pseudo-first-order with respect to acetate in the forward direction (kf = 1.82 X 10-4 s-1), and first-order with respect to each product species in the reverse direction (kr = 4.49 X10-4 L mol-1 S l). The feed contains only A in water, at a concentration of 0.050 mol L-1. Determine the size of the reactor required, if the rate of product formation is to be 100 mol h-1 on a continuing basis, the down-time per batch is 30 min, and the optimal fractional conversion (i.e., that which maximizes production) is obtained in each cycle. [Pg.446]


See other pages where S-methyl acetate is mentioned: [Pg.154]    [Pg.79]    [Pg.562]    [Pg.563]    [Pg.414]    [Pg.4]    [Pg.154]    [Pg.79]    [Pg.562]    [Pg.563]    [Pg.414]    [Pg.4]    [Pg.223]    [Pg.1094]    [Pg.69]    [Pg.452]    [Pg.514]    [Pg.94]    [Pg.1294]    [Pg.208]    [Pg.284]    [Pg.458]    [Pg.240]    [Pg.254]    [Pg.622]    [Pg.678]    [Pg.454]    [Pg.117]    [Pg.153]    [Pg.348]    [Pg.185]    [Pg.50]    [Pg.234]    [Pg.279]    [Pg.423]    [Pg.87]    [Pg.298]    [Pg.392]   
See also in sourсe #XX -- [ Pg.562 ]




SEARCH



Acetals methylation

Acetates methylated

Methyl acetals

Methyl acetate

O-Methyl-S-phenyl acetals and ketals

O-Methyl-S-phenyl acetals and ketals protect carbonyl groups

S-Methylation

© 2024 chempedia.info