Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ruthenium complexes hydrogenation

Table 5 lists other ruthenium complexes that could catalyze selective hydrogenation in NBR. However, their activity could not be properly compared as they... [Pg.563]

Asymmetric epoxidation of olefins with ruthenium catalysts based either on chiral porphyrins or on pyridine-2,6-bisoxazoline (pybox) ligands has been reported (Scheme 6.21). Berkessel et al. reported that catalysts 27 and 28 were efficient catalysts for the enantioselective epoxidation of aryl-substituted olefins (Table 6.10) [139]. Enantioselectivities of up to 83% were obtained in the epoxidation of 1,2-dihydronaphthalene with catalyst 28 and 2,6-DCPNO. Simple olefins such as oct-l-ene reacted poorly and gave epoxides with low enantioselectivity. The use of pybox ligands in ruthenium-catalyzed asymmetric epoxidations was first reported by Nishiyama et al., who used catalyst 30 in combination with iodosyl benzene, bisacetoxyiodo benzene [PhI(OAc)2], or TBHP for the oxidation of trons-stilbene [140], In their best result, with PhI(OAc)2 as oxidant, they obtained trons-stilbene oxide in 80% yield and with 63% ee. More recently, Beller and coworkers have reexamined this catalytic system, finding that asymmetric epoxidations could be perfonned with ruthenium catalysts 29 and 30 and 30% aqueous hydrogen peroxide (Table 6.11) [141]. Development of the pybox ligand provided ruthenium complex 31, which turned out to be the most efficient catalyst for asymmetric... [Pg.222]

Fuel cells essentially reverse the electrolytic process. Two separated platinum electrodes immersed in an electrolyte generate a voltage when hydrogen is passed over one and oxygen over the other (forming H30+ and OH-, respectively). Ruthenium complexes are used as catalysts for the electrolytic breakdown of water using solar energy (section 1.8.1). [Pg.174]

D KR of allylic alcohols can be also performed using ruthenium complexes for the racemization that occurs through hydrogen transfer reactions (vide infra) [16]. [Pg.93]

A ruthenium complex [RuCl2(TPPTS)2]2 was used for regeneration of NADP+ to NADPH withhydrogen. Thus, 2-heptanonewas reduced with alcohol dehydrogenase from Thermoanaerobacter brockii in the presence of the mthenium complex, NAD P, and hydrogen at 60°C to (S)-2-heptanol in 40 % ee. Turnover number was reported to be 18 (Figure 8.6) [5cj. [Pg.196]

Figure 8.6 Reduction of ketone with ruthenium complex and alcohol dehydrogenase using molecular hydrogen as a hydrogen source [5c],... Figure 8.6 Reduction of ketone with ruthenium complex and alcohol dehydrogenase using molecular hydrogen as a hydrogen source [5c],...
Dendrimers can be constructed from chemical species other than purely organic monomers. For example, they can be built up from metal branching centres such as ruthenium or osmium with multidentate ligands. The resulting molecules are known as metallodendrimers. Such molecules can retain their structure by a variety of mechanisms, including complexation, hydrogen bonding and ionic interactions. [Pg.135]

One other study of group 14 heteroallenes involving transition metals was reported in 1995. Jones et al. described the isolation of a ruthenium complex of a 1-silaallene (132—Scheme 32). The 1-silaallene also interacts with a hydrogen atom as well as the ruthenium metal center. Jones et al. describe this view... [Pg.32]

Reduction of acetophenone by PrOH/H has been studied with the ruthenium complexes [Ru(H)(ri2-BH )(CO)L(NHC)], (L = NHC, PPh3, NHC = IMes, IPr, SIPr). The activity of the system is dependent on the nature of the NHC and requires the presence of both PrOH and H, implying that transfer and direct hydrogenation mechanisms may be operating in parallel [15]. [Pg.26]

In 2000, these authors also developed a very efficient diphosphine-bithiophene ligand, tetraMe-BITIOP, which is depicted in Scheme 8.29. The ruthenium complex of this electron-rich diphosphine was used as the catalyst in asymmetric hydrogenation reactions of prostereogenic carbonyl functions of a-... [Pg.263]

More recently, these authors have reported the synthesis of a new thiophene-based analogue of (I ,i )-Me-DuPHOS called UlluPHOS. The facial recognition and enantioselection associated with ruthenium complexes of UlluPHOS and Me-DuPHOS were shown to be similarly high in various hydrogenations of p-keto esters (Scheme 8.32). The most important difference between these two ligands was found by comparing the reaction rates. Indeed, the authors have observed that the use of UlluPHOS considerably increased the activity of the complexes. [Pg.265]

The first example of an asymmetric reduction of C=N bonds proceeding via DKR was reported in 2005 by Lassaletta et al. In this process, the transfer hydrogenation of 2-substituted bicyclic and monocyclic ketimines could be accomplished via DKR by using a HCO2H/TEA mixture as the hydrogen source and a chiral ruthenium complex including TsDPEN ligand,... [Pg.288]

Manufacture of ruthenium precatalysts for asymmetric hydrogenation. The technology in-licensed from the JST for the asymmetric reduction of ketones originally employed BINAP as the diphosphine and an expensive diamine, DAIPEN." Owing to the presence of several patents surrounding ruthenium complexes of BINAP and Xylyl-BINAP, [HexaPHEMP-RuCl2-diamine] and [PhanePHOS-RuCl2-diamine] were introduced as alternative catalyst systems in which a cheaper diamine is used. Compared to the BINAP-based systems both of these can offer superior performance in terms of activity and selectivity and have been used in commercial manufacture of chiral alcohols on multi-100 Kg scales. [Pg.75]

Scheme 5.5. Enantioselective Hydrogenation with Ruthenium Complex Catalysts... [Pg.395]

The use of chiral ruthenium catalysts can hydrogenate ketones asymmetrically in water. The introduction of surfactants into a water-soluble Ru(II)-catalyzed asymmetric transfer hydrogenation of ketones led to an increase of the catalytic activity and reusability compared to the catalytic systems without surfactants.8 Water-soluble chiral ruthenium complexes with a (i-cyclodextrin unit can catalyze the reduction of aliphatic ketones with high enantiomeric excess and in good-to-excellent yields in the presence of sodium formate (Eq. 8.3).9 The high level of enantioselectivity observed was attributed to the preorganization of the substrates in the hydrophobic cavity of (t-cyclodextrin. [Pg.217]

Rhodium and ruthenium complexes have also been studied as effective catalysts. Rh(diphos)2Cl [diphos = l,2-bis(diphenyl-phosphino)ethane] catalyzed the electroreduction of C02 in acetonitrile solution.146 Formate was produced at current efficiencies of ca. 20-40% in dry acetonitrile at ca. -1.5 V (versus Ag wire). It was suggested that acetonitrile itself was the source of the hydrogen atom and that formation of the hydride HRh(diphos)2 as an active intermediate was involved. Rh(bpy)3Cl3, which had been used as a catalyst for the two-electron reduction of NAD+ (nicotinamide adenine dinucleotide) to NADH by Wienkamp and Steckhan,147 has also acted as a catalyst for C02 reduction in aqueous solutions (0.1 M TEAP) at -1.1 V versus SCE using Hg, Pb, In, graphite, and n-Ti02 electrodes.148 Formate was the main... [Pg.378]

Ruthenium complexes of (129) and (130)336 were investigated for the asymmetric hydrogenation of prochiral 2-R-propenoic acids (Scheme 62a) rhodium complexes of these ligands were used for hydrogenation of acetoamido-cinnamic acid methyl ester (Scheme 62c) and hydrogenation of acetophenone-benzylamine (Scheme 62b). The results obtained with these... [Pg.119]

Nagashima reported the hydrogenation of di-, tri- and tetranuclear ruthenium complexes bearing azulenes below 100 °C revealed that only the triruthenium compounds reacted with H2 via triruthenium dihydride intermediates.398 This indicates that there exists a reaction pathway to achieve facile activation of dihydrogen on the face of a triruthenium carbonyl moiety.399... [Pg.129]

ASYMMETRIC HYDROGENATION OF 3-OXO CARBOXYLATES USING BINAP-RUTHENIUM COMPLEXES (R)-(-)-METHYL 3-HYDROXYBUTANOATE (Butanoic acid, 3-hydroxy-, methyl ester, (R)-)... [Pg.137]

Asymmetric transfer hydrogenation can be employed in the asymmetric hydrogenation of prochiral ketones with a ruthenium complex of bis(oxazolinylmethyl) amine ligand 110. Enantioselectivities are greater than 95%.643... [Pg.113]


See other pages where Ruthenium complexes hydrogenation is mentioned: [Pg.178]    [Pg.23]    [Pg.563]    [Pg.321]    [Pg.1566]    [Pg.60]    [Pg.180]    [Pg.249]    [Pg.265]    [Pg.284]    [Pg.288]    [Pg.186]    [Pg.191]    [Pg.205]    [Pg.45]    [Pg.121]    [Pg.587]    [Pg.113]    [Pg.749]    [Pg.140]    [Pg.116]    [Pg.55]    [Pg.62]    [Pg.150]    [Pg.230]    [Pg.41]    [Pg.54]   
See also in sourсe #XX -- [ Pg.231 ]

See also in sourсe #XX -- [ Pg.231 ]

See also in sourсe #XX -- [ Pg.2 , Pg.6 , Pg.231 , Pg.711 ]

See also in sourсe #XX -- [ Pg.146 ]




SEARCH



Enantioselective hydrogenation ruthenium complexes

Hydrogen complexes

Hydrogen molecular, reaction with ruthenium complexes

Hydrogenation complexes

Hydrogenation with ruthenium complexes

Ruthenium biimidazole complexes, hydrogen bonding

Ruthenium complex catalysts asymmetric hydrogenation

Ruthenium complex catalysts hydrogenation

Ruthenium complexes hydrogen

Ruthenium complexes hydrogen

Ruthenium complexes transfer hydrogenation

Ruthenium complexes, Noyori catalytic asymmetric hydrogenation

Ruthenium hydrogenation

Ruthenium-Complex-Catalyzed Hydrogenations

© 2024 chempedia.info