Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ruthenium catalysts, product selectivities

In recent years, a wealth of information has accumulated on RCM reactions leading to 5-, 6-, and 7-membered carbocycles and heterocycles, so that it is impossible to refer to all the new, natural product-directed work. Therefore, we will concentrate here on a few selected examples that can illustrate (1) the progress made by the advent of the second-generation ruthenium catalysts C-E, (2) the use of RCM in concert with other innovative methodology, and (3) the use of RCM in total syntheses of newly discovered natural products which, due to an outstanding biological profile, have attracted specific interest by the synthetic community. [Pg.276]

The lipase-catalyzed DKRs provide only (/ )-products to obtain (5 )-products, we needed a complementary (5 )-stereoselective enzyme. A survey of (5 )-selective enzymes compatible to use in DKR at room temperature revealed that subtilisin is a worthy candidate, but its commercial form was not applicable to DKR due to its low enzyme activity and instability. However, we succeeded in enhancing its activity by treating it with a surfactant before use. At room temperature DKR with subtilisin and ruthenium catalyst 5, trifluoroethyl butanoate was employed as an acylating agent and the (5 )-products were obtained in good yields and high optical purities (Table 3)P... [Pg.69]

In aqueous media, the addition of unactivated alkynes to unactivated alkenes to form Alder-ene products has been realized by using a ruthenium catalyst (Eq. 3.44).180 A polar medium (DMF H20 = 1 1) favors the reaction and benefits the selectivity. The reaction was proposed to proceed via a ruthenacycle intermediate. [Pg.77]

Mitsubishi have reported several processes based on Ru-catalyzed hydrogenation of anhydrides and acids. Succinic anhydride can be converted into mixtures of 1,4-butane-diol and y-butyrolactone using [Ru(acac)3]/trioctylphosphine and an activator (often a phosphonic acid) [97]. Relatively high temperatures are required ( 200°C) for this reaction. The lactone can be prepared selectively under the appropriate reaction conditions, and a process has been developed for isolating the products and recycling the ruthenium catalyst [98-100]. [Pg.442]

The sense of diastereoselectivity in the dynamic kinetic resolution of 2-substi-tuted / -keto esters depends on the structure of the keto ester. The ruthenium catalyst with atropisomeric diphosphine ligands (binap, MeO-biphep, synphos, etc.) induced syn-products in high diastereomeric and enantiomeric selectivity in the dynamic kinetic resolution of / -keto esters with an a-amido or carbamate moiety (Table 21.21) [119-121, 123, 125-127]. In contrast to the above examples of a-amido-/ -keto esters, the TsOH or HC1 salt of /l-keto esters with an a-amino unit were hydrogenated with excellent cwti-selectivity using ruthenium-atropiso-... [Pg.698]

In 1989, a method for the peroxysilylation of alkenes nsing triethylsUane and oxygen was reported by Isayama and Mnkaiyama (eqnation 25). The reaction was catalyzed by several cobalt(II)-diketonato complexes. With the best catalyst Co(modp)2 [bis(l-morpholinocarbamoyl-4,4-dunethyl-l,3-pentanedionato)cobalt(n)] prodnct yields ranged between 75 and 99%. DiaUcyl peroxides can also be obtained starting from tertiary amines 87, amides 89 or lactams via selective oxidation in the a-position of the Af-fnnctional group with tert-butyl hydroperoxide in the presence of a ruthenium catalyst as presented by Murahashi and coworkers in 1988 ° (Scheme 38). With tertiary amines 87 as substrates the yields of the dialkyl peroxide products 88 ranged between 65 and 96%, while the amides 89 depicted in Scheme 38 are converted to the corresponding peroxides 90 in yields of 87% (R = Me) and 77% (R = Ph). [Pg.360]

Figure 2 illustrates the effect of incremental changes in ruthenium catalyst content upon the production of acetic acid and its C1--C2 alkyl acetate esters. Acetic acid production is maximized at Ru/Co ratios of ca. 1.0 1.5 however, the data in Figure 2 do show an approximate first order dependence of lOAc (acetic acid plus acetate esters) upon initial ruthenium content—at least up to the 2/1, Ru/Co stoichiometry under the chosen conditions. Selectivity to acetic acid in the liquid product peaks at 92 wt % (carbon efficiency 95 mol %) for a catalyst combination with initially low Ru/Co ratios (e.g. 1 4). The formation of C1-C2 alkanols and their acetate esters rapidly exceeds acetic acid productivity when the Ru/Co atomic ratio is raised above 1.5, although two-carbon oxygenates continue to be the predominant fraction. Smaller quantities of glycol may also be in evidence. [Pg.99]

Catalyst deactivation during consecutive lactose and xylose hydrogenation batches over Mo promoted sponge nickel (Activated Metals) and Ru(5%)/C (Johnson Matthey) catalysts were studied. Deactivation over sponge nickel occurred faster than on Ru/C in both cases. Product selectivities were high (between 97 and 100%) over both catalysts. However, related to the amount of active metal on the catalyst, ruthenium had a substantially higher catalytic activity compared to nickel. [Pg.235]

Reactions of ruthenium catalyst precursors in carboxylic acid solvents with various salt promoters have also been described (170-172, 197) (Table XV, Expt. 7). For example, in acetic acid solvent containing acetate salts of quaternary phosphonium or cesium cations, ruthenium catalysts are reported to produce methyl acetate and smaller quantities of ethyl acetate and glycol acetates (170-172). Most of these reactions also include halide ions the ruthenium catalyst precursor is almost invariably RuC13 H20. The carboxylic acid is not a necessary component in these salt-promoted reactions as shown above, nonreactive solvents containing salt promoters also allow production of ethylene glycol with similar or better rates and selectivities. The addition of a rhodium cocatalyst to salt-promoted ruthenium catalyst solutions in carboxylic acid solvents has been reported to increase the selectivity to the ethylene glycol product (198). [Pg.389]

The application of various ruthenium compounds in acetonitrile330 or rhodium and ruthenium catalysts or their mixtures331 was found to show significant improvements (high product selectivities, high linearities) in the aminomethylation of terminal alkenes to produce tertiary amines. [Pg.394]

Since many ruthenium species, including ammines, are readily carbonyl-ated using carbon monoxide under mild conditions (4, 5), there seemed a good probability that effective ruthenium catalysts could be found for amine carbonylation under mild conditions. Product selectivity, a problem at more severe conditions, should also improve. [Pg.176]


See other pages where Ruthenium catalysts, product selectivities is mentioned: [Pg.50]    [Pg.315]    [Pg.274]    [Pg.316]    [Pg.329]    [Pg.1112]    [Pg.104]    [Pg.157]    [Pg.59]    [Pg.352]    [Pg.227]    [Pg.304]    [Pg.304]    [Pg.802]    [Pg.444]    [Pg.461]    [Pg.562]    [Pg.681]    [Pg.174]    [Pg.229]    [Pg.20]    [Pg.328]    [Pg.403]    [Pg.323]    [Pg.110]    [Pg.117]    [Pg.117]    [Pg.41]    [Pg.187]    [Pg.248]    [Pg.375]    [Pg.386]    [Pg.405]    [Pg.408]    [Pg.360]    [Pg.231]    [Pg.145]   


SEARCH



Catalyst productivity

Catalyst selection

Catalyst selectivity

Catalysts production

Product selection

Rhodium-ruthenium catalysts product selectivity

Ruthenium selectivities

Selective catalysts

© 2024 chempedia.info