Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ruthenium carbonyl complex formation

Fischer-Tropsch synthesis could be "tailored by the use of iron, cobalt and ruthenium carbonyl complexes deposited on faujasite Y-type zeolite as starting materials for the preparation of catalysts. Short chain hydrocarbons, i.e. in the C-j-Cq range are obtained. It appears that the formation and the stabilization of small metallic aggregates into the zeolite supercage are the prerequisite to induce a chain length limitation in the hydrocondensation of carbon monoxide. However, the control of this selectivity through either a definite particle size of the metal or a shape selectivity of the zeolite is still a matter of speculation. Further work is needed to solve this dilemna. [Pg.201]

Reaction at a higher temperature for a longer period leads to formation of the ruthenium carbonyl complex [IR(KBr) 1964 cm 3]. [Pg.192]

Solutions of ruthenium carbonyl complexes in acetic acid solvent under 340 atm of 1 1 H2/CO are stable at temperatures up to about 265°C (166). Reactions at higher temperatures can lead to the precipitation of ruthenium metal and the formation of hydrocarbon products. Bradley has found that soluble ruthenium carbonyl complexes are unstable toward metallization at 271°C under 272 atm of 3 2 H2/CO [109 atm CO partial pressure (165)]. Solutions under these conditions form both methanol and alkanes, products of homogeneous and heterogeneous catalysis, respectively. Reactions followed with time exhibited an increasing rate of alkane formation corresponding to the decreasing concentration of soluble ruthenium and methanol formation rate. Nevertheless, solutions at temperatures as high as 290°C appear to be stable under 1300 atm of 3 2 H2/CO. [Pg.381]

Another possible reason that ethylene glycol is not produced by this system could be that the hydroxymethyl complex of (51) and (52) may undergo preferential reductive elimination to methanol, (52), rather than CO insertion, (51). However, CO insertion appears to take place in the formation of methyl formate, (53), where a similar insertion-reductive elimination branch appears to be involved. Insertion of CO should be much more favorable for the hydroxymethyl complex than for the methoxy complex (67, 83). Further, ruthenium carbonyl complexes are known to hydro-formylate olefins under conditions similar to those used in these CO hydrogenation reactions (183, 184). Based on the studies of equilibrium (46) previously described, a mononuclear catalyst and ruthenium hydride alkyl intermediate analogous to the hydroxymethyl complex of (51) seem probable. In such reactions, hydroformylation is achieved by CO insertion, and olefin hydrogenation is the result of competitive reductive elimination. The results reported for these reactions show that olefin hydroformylation predominates over hydrogenation, indicating that the CO insertion process of (51) should be quite competitive with the reductive elimination reaction of (52). [Pg.384]

The results show that a number of ruthenium carbonyl complexes are effective for the catalytic carbonylation of secondary cyclic amines at mild conditions. Exclusive formation of N-formylamines occurs, and no isocyanates or coupling products such as ureas or oxamides have been detected. Noncyclic secondary and primary amines and pyridine (a tertiary amine) are not effectively carbonylated. There appears to be a general increase in the reactivity of the amines with increasing basicity (20) pyrrolidine (pKa at 25°C = 11.27 > piperidine (11.12) > hexa-methyleneimine (11.07) > morpholine (8.39). Brackman (13) has stressed the importance of high basicity and the stereochemistry of the amines showing high reactivity in copper-catalyzed systems. The latter factor manifests itself in the reluctance of the amines to occupy more than two coordination sites on the cupric ion. In some of the hydridocar-bonyl systems, low activity must also result in part from the low catalyst solubility (Table I). [Pg.183]

Reaction at a higher temperature for a longer period leads to formation of the ruthenium carbonyl complex [IR(KBr) 1964 cnv ], This undesired reaction is suppressed under the present conditions. Use of commercial [RuCl2(1,5-cyclooctadiene)]n or readily available RuCl2[Sb(CaHs)3]33 gives similar results on heating in DMF at 160°C for 20 min or in o-dichlorobenzene at 160°C for 10 min. N.N-Dimethylacetamide can be used in place of DMF. [Pg.3]

Treatment of the disubstituted vinylidene complex 124 with base in wet methanol cleaves the vinylidene bond to give the cationic ruthenium carbonyl complex 126 and bibenzyl in good yield. This reaction presumably proceeds via initial formation of the acyl complex 125, which decomposes to give the products [Eq. (106)] (78). Other mono- and disubstituted vinylidene complexes, however, do not give identifiable decomplexation... [Pg.65]

Immobilization of homogeneous WGS catalysts was reported by Doi ct al. [41] for ruthenium carbonyl complexes modified with phosphine ligands as linkers to silica support material, resulting in a low activity of 0.5 h . RuClj-hydrate immobilized on silica was investigated by means of FT-IR. Upon recrystallization, the formation of dimeric [Ru(CO)3Cl2]2 and [Ru2(CO)i Cl4(H20)] was seen on the surface. Silica was also used to immobilize RuClj [42]. [Pg.331]

In 2011, Schaub and Paciello observed the formation of ruthenium carbonyl and formate complexes in the catalytic reaction of electron-rich complex [Ru(H)2(P Bu3)4l with FA in the presence of trihexylamine (NHex3)... [Pg.63]

However, while ruthenium carbonyl was found to decompose the formate ion in basic media, the rate was slower (<0.1 mmol trimethyl ammonium formate to H2 and C02 per hour) than the rate of the water-gas shift reaction (>0.4 mmol H2/hr) at 5 atm CO and 100 °C. Increasing CO pressure decreased the formate decomposition rate. However, it was observed that increasing the CO pressure from 5 atm CO to 50 atm increased the H2 production rate to 10 mmol/hr. They proposed, in a similar manner to Pettit et al.,34 a mechanism that involved nucleophilic attack by amine (instead of hydroxide). Activation of the metal carbonyl (e.g., Ru3(CO) 2 cluster to Ru(CO)5) was suggested to be favored by dilution, increases in CO pressure, or, in the case of Group VIb metal carbonyl complexes, photolytic promotion. The mechanism is shown below in Scheme 9 ... [Pg.127]

Hexaruthenium carbonyl complexes have been used to prepare Ti02-supported mthenium catalysts for the sulfur dioxide reduction with hydrogen [112, 113], A catalyst derived from [Ru6C(CO)i6] showed higher activity in the production of elemental sulfur at low temperatures than that prepared from RUCI3 as precursor. This catalytic behavior is related with the formation of an amorphous ruthenium sulfide phase that takes place during the reaction over the ex-carbonyl catalyst [112]. [Pg.329]

Dr. Halpern I don t know whether this is relevant to the first reaction or not, but we have also been struggling with the study of various reactions of ruthenium chlorides including ruthenium(II) chloride for a long time. Among the reactions studied is the formation of olefin and carbonyl complexes of ruthenium(II). These form readily in aqueous solution, and are fairly stable. James and Kemp, working on these systems in my laboratory have studied in some detail the kinetics of the reactions ... [Pg.148]

Fig. 5.4 depicts some results obtained in the first stages (high nuclearity complexes formation) of the synthesis in xylene solvent which leads to the formation of nanostructured powders, RuxSey, from tris-ruthenium dodeca-carbonyl (Ru3(CO)i2) and elemental selenium dissolved in an organic solvent (xylene). After 40 minutes of reaction, l3C-NMR spectrum (Fig. 5.4 (c)) puts in evidence the formation of a new polynuclear chemical precursor with a chemical shift 8 of 198.89 ppm (i.e., Ru4Se2(CO)n)- Selenium takes part in the coordination sphere. The peak intensity with the chemical shift of 199.67 ppm, corresponds to the initial chemical precursor which decreases as a function of the synthesis reaction time (Fig. 5.4(a)). Other chemical shifts (with minor peak intensities) on both sides of the 13C-NMR spectrum, which put in evidence the complex interplay of the reaction, are also observed. [Pg.139]

Water also attacks the electrophilic a carbon of the ruthenium vi-nylidene complex 80. The reaction does not yield the ruthenium acyl complex, however, as is found for the reaction with the similar iron vinylidene complex [(i75-C5H5)(CO)2Fe=C=CHPh]+ (56), but rather 91 is the only isolated product (78). The mechanism for this transformation most reasonably involves rapid loss of H+ from the initially formed hydroxycarbene to generate an intermediate acyl complex (90). Reversible loss of triphenyl-phosphine relieves steric strain at the congested ruthenium center, and eventual irreversible migration of the benzyl fragment to the metal leads to formation of the more stable carbonyl complex (91) [Eq. (86)]. [Pg.52]


See other pages where Ruthenium carbonyl complex formation is mentioned: [Pg.138]    [Pg.611]    [Pg.317]    [Pg.137]    [Pg.138]    [Pg.59]    [Pg.364]    [Pg.43]    [Pg.390]    [Pg.611]    [Pg.45]    [Pg.394]    [Pg.171]    [Pg.89]    [Pg.874]    [Pg.78]    [Pg.129]    [Pg.147]    [Pg.30]    [Pg.431]    [Pg.127]    [Pg.411]    [Pg.759]    [Pg.8]    [Pg.480]    [Pg.29]    [Pg.215]    [Pg.18]    [Pg.178]    [Pg.303]    [Pg.819]    [Pg.66]   
See also in sourсe #XX -- [ Pg.138 ]




SEARCH



Carbonyl formation

Ruthenium carbonyl

Ruthenium carbonyl complexes

Ruthenium carbonylations

© 2024 chempedia.info